967 resultados para Intracellular


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unactivated steroid receptors are chaperoned into a conformation that is optimal for binding hormone by a number of heat shock proteins, including Hsp90, Hsp70, Hsp40, and the immunophilin, FKBP52 (Hsp56). Together with its partner cochaperones, cyclophilin 40 (CyP40) and FKBP51, FKBP52 belongs to a distinct group of structurally related immunophilins that modulate steroid receptor function through their association with Hsp90. Due to the structural similarity between the component immunophilins, FKBP52 and cyclophilin 40, we decided to investigate whether CyP40 is also a heat shock protein. Exposure of MCF-7 breast cancer cells to elevated temperatures (42 degreesC for 3 hours) resulted in a 75-fold increase in CyP40 mRNA levels, but no corresponding increase in CyP40 protein expression, even after 7 hours of heat stress. The use of cycloheximide to inhibit protein synthesis revealed that in comparison to MCF-7 cells cultured at 37 degreesC, those exposed to heat stress (42 degreesC for 3 hours) displayed an elevated rate of degradation of both CyP40 and FKBP52 proteins. Concomitantly, the half-life of the CyP40 protein was reduced from more than 24 hours to just over 8 hours following heat shock. As no alteration in CyP40 protein levels occurred in cells exposed to heat shock, an elevated rate of degradation would imply that CyP40 protein was synthesized at an increased rate. hence the designation of human CyP40 as a heat shock protein. Application of heat stress elicited a marked redistribution of CyP40 protein in MCF-7 cells from a predominantly nucleolar localization, with some nuclear and cytoplasmic staining, to a pattern characterized by a pronounced nuclear accumulation of CyP40, with no distinguishable nucleolar staining. This increase in nuclear CyP40 possibly resulted from a redistribution of cytoplasmic and nucleolar CyP40, as no net increase in CyP40 expression levels occurred in response to stress. Exposure of MCF-7 cells to actinomycin D for 4 hours resulted in the translocation of the nucleolar marker protein, B23, from the nucleolus, with only a small reduction in nucleolar CyP40 levels. Under normal growth conditions, MCF-7 cells exhibited an apparent colocalization of CyP40 and FKBP52 within the nucleolus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of beta-fructofuranosidases by Aspergillus niveus, cultivated under submerged fermentation using agroindustrial residues, was investigated. The highest productivity of beta-fructofuranosidases was obtained in Khanna medium supplemented with sugar cane bagasse as carbon source. Glucose enhanced the production of the intracellular enzyme, whereas that of the extracellular one was decreased. The intracellular beta-fructofuranosidase was a trimeric protein of approximately 141 kDa (gel filtration) with 53.5% carbohydrate content, composed of 57 kDa monomers (SDS-PAGE). The optimum temperature and optimum pH were 60 degrees C and 4.5, respectively. The purified enzyme showed good thermal stability and exhibited a half-life of 53 min at 60 degrees C. beta-Fructofuranosidase activity was slightly activated by Cu(2+), Mn(2+), Mg(2+), and Na(+) at 1 mM concentration. The enzyme hydrolyzed sucrose, raffinose, and inulin, with K(d) values of 5.78 mM, 5.74 mM, and 1.74 mM, respectively. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of NFkB by the compound Bay 11–7082 (Bay) induces tolerogenic properties in dendritic cells (DC). While activation of NFkB can be induced by reactive oxygen species (ROS) and thiol/disulfide redox states, the consequences of NFkB blockade on ROS/redox state is not known. To generate immature DC, monocytes were cultured in GM-CSF and IL-4 (with or without Bay) for 48 h. Genes potentially involved in redox regulation were determined using microarray technology and validated using FACS, real-time PCR or western blotting. ROS were measured using two fluorescent dyes DHR-123 and DHE (to detect H2O2 or O2 respectively). We found increased expression of genes associated with reductants such as thioredoxin reductase (TrxR1) and glutathione (GSH), although those associated with the breakdown of H2O2 such as glutathione peroxidase, peroxiredoxins and catalase were decreased. Interestingly, Bay-treated DC produced less ROS in comparison to control DC under basal conditions and following stimulation with various pro-oxidants. In conclusion, Bay-treated DC display not only tolerogenic properties but also an intracellular reducing environment and an impaired ability to produce ROS. We are currently investigating whether exogenous ROS can interfere with the tolerogenic properties of Bay-treated DC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha 1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extraction of intracellular protein from Escherichia coli is traditionally achieved by mechanical disruption. A chemical treatment that destroys the integrity of the bacterial cell wall and could provide an alternative technique is examined in this study. Treatment with a combination of the chelating agent ethylenediaminetetraacetate (EDTA) (greater than 0.3 mM) and the chaotropic agent urea (6 M) is highly effective at releasing protein from uninduced E. coli. The 6 M urea in the presence of 3 mM EDTA can release cytoplasmic protein from both logarithmic-phase and stationary-phase E. coli cells at levels equivalent to mechanical disruption. The concentrations of the two chemical agents were the major variables affecting the maximum levels of protein release. Several minor variables and interactions were also identified. The kinetics of protein release is first order. For 2, 4, and 6 M urea with 3 mM EDTA, the time constant is approximately 2.5 min independent of urea concentration. Kinetics for 3 mM EDTA without urea is considerably slower, with a time constant of 12.3 min. (C) 1997 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to investigate how the Arg386Pro mutation prolongs KiSS-1 receptor (KISS1R) responsiveness to kisspeptin, contributing to human central precocious puberty. Confocal imaging showed colocalization of wild-type (WT) KISS1R with a membrane marker, which persisted for up to 5 h of stimulation. Conversely, no colocalization with a lysosome marker was detected. Also, overnight treatment with a lysosome inhibitor did not affect WT KISS1R protein, whereas overnight treatment with a proteasome inhibitor increased protein levels by 24-fold. WT and Arg386Pro KISS1R showed time-dependent internalization upon stimulation. However, both receptors were recycled back to the membrane. The Arg386Pro mutation did not affect the relative distribution of KISS1R in membrane and internalized fractions when compared to WT KISS1R for up to 120 min of stimulation, demonstrating that this mutation does not affect KISS1R trafficking rate. Nonetheless, total Arg386Pro KISS1R was substantially increased compared with WT after 120 min of kisspeptin stimulation. This net increase was eliminated by blockade of detection of recycled receptors, demonstrating that recycled receptors account for the increased responsiveness of this mutant to kisspeptin. We therefore conclude the following: 1) WT KISS1R is degraded by proteasomes rather than lysosomes; 2) WT and Arg386Pro KISS1R are internalized upon stimulation, but most of the internalized receptors are recycled back to the membrane rather than degraded; 3) the Arg386Pro mutation does not affect the rate of KISS1R trafficking-instead, it prolongs responsiveness to kisspeptin by decreasing KISS1R degradation, resulting in the net increase on mutant receptor recycled back to the plasma membrane.(Endocrinology 152: 1616-1626,2011)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous studies investigating the possible role of altered Ca2+ homeostasis in hypertension have compared resting and agonist-stimulated intracellular free Ca2+ ([Ca2+](i)) in cultured aortic smooth muscle cells from spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. However, such studies have not given consistent results. Differences in the method used to load cells with the Ca2+-sensitive indicator fura-2 have been investigated here as a possible source of variability between studies. We also describe the adaptation of a fluorescence technique for the assessment of basal Ca2+ permeability in SHR and WKY through the measurement of Mn2+ influx. The results are consistent with the hypothesis that basal Ca2+ influx is elevated in cultured aortic smooth muscle cells from SHR compared to those from WKY. However, this was not reflected as a significant difference between the two strains in basal or angiotensin II (200 nmol/L)stimulated [Ca2+](i). Furthermore, this result was not dependent on the protocol used to load cells with fura-2. Hence, measurement of bulk [Ca2+](i) does not appear to be the most sensitive parameter for altered Ca2+ homeostasis in SHR. Other compartments of the cell may better reflect altered Ca2+ fluxes in hypertension and are discussed in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: The expression of sodium iodide symporter (NIS) is required for iodide uptake in thyroid cells. Benign and malignant thyroid tumors have low iodide uptake. However, previous studies by RT-PCR or immunohistochemistry have shown divergent results of NIS expression in these nodules. Objective: The objective of the study was to investigate NIS mRNA transcript levels, compare with NIS and TSH receptor proteins expression, and localize the NIS protein in thyroid nodules samples and their surrounding nonnodular tissues (controls). Design: NIS mRNA levels, quantified by real-time RT-PCR, and NIS and TSH receptor proteins, evaluated by immunohistochemistry, were examined in surgical specimens of 12 benign and 13 malignant nodules and control samples. Results: When compared with controls, 83.3% of the benign and 100% of the malignant nodules had significantly lower NIS gene expression. Conversely, 66.7% of the benign and 100% of malignant nodules had stronger intracellular NIS immunostaining than controls. Low gene expression associated with strong intracellular immunostaining was most frequently detected in malignant (100%) than benign nodules (50%; P = 0.005). NIS protein was located at the basolateral membrane in 24% of the control samples, 8.3% of the benign, and 15.4% of the malignant nodules. The percentage of benign nodules with strong TSH receptor positivity (41.6%) was higher than malignant (7.7%). Conclusion: We confirmed that reduced NIS mRNA expression in thyroid malignant nodules is associated with strong intracellular protein staining and may be related to the inability of the NIS protein to migrate to the cellular basolateral membrane. These results may explain the low iodide uptake of malignant nodules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells produce and use peptides in distinctive ways. In the present report, using isotope labeling plus semi-quantitative mass spectrometry, we evaluated the intracellular peptide profile of TAP1/beta 2m(-/-) (transporter associated with antigen-processing 1/beta 2 microglobulin) double-knockout mice and compared it with that of C57BL/6 wild-type animals. Overall, 92 distinctive peptides were identified, and most were shown to have a similar concentration in both mouse strains. However, some peptides showed a modest increase or decrease (similar to 2-fold), whereas a glycine-rich peptide derived from the C-terminal of neurogranin (KGPGPGGPGGAGGARGGAGGGPSGD) showed a substantial increase (6-fold) in TAP1/beta 2m(-/-) mice. Thus, TAP1 and beta 2microglobulin have a small influence on the peptide profile of neuronal tissue, suggesting that the presence of peptides derived from intracellular proteins in neuronal tissue is not associated with antigens of the class I major histocompatibility complex. Therefore, it is possible that these intracellular peptides play a physiological role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Debaryomyces hansenii cells cultivated on galactose produced extracellular and intracellular alpha-galactosidases, which showed 54.5 and 54.8 kDa molecular mass (MALDI-TOF), 60 and 61 kDa (SDS-PAGE) and 5.15 and 4.15 pI values, respectively. The extracellular and intracellular deglycosylated forms presented 36 and 40 kDa molecular mass, with 40 and 34% carbohydrate content, respectively. The N-terminal sequences of the alpha-galactosidases were identical. Intracellular alpha-galactosidase showed smaller thermostability when compared to the extracellular enzyme. D. hansenii UFV-1 extracellular alpha-galactosidase presented higher k(cat) than the intracellular enzyme (7.16 vs 3.29 s(-1), respectively) for the p-nitrophenyl-alpha-D-galactopyranoside substrate. The K(m) for hydrolysis of pNP alpha Gal, melibiose, stachyose, and raffinose were 0.32, 2.12, 10.8, and 32.8 mM, respectively. The intracellular enzyme was acompetitively inhibited by galactose (K(i) = 0.70 mM), and it was inactivated by Cu(II) and Ag(I). Enzyme incubation with soy milk for 6 h at 55 degrees C reduced stachyose and raffinose amounts by 100 and 73%, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To evaluate the intracellular production of tumor necrosis factor (TNF-alpha), interleukine-6 (IL-6), INF-gamma, IL-8 and IL-10 in peripheral blood lympbomononuclear cells from type 1 and type 2 diabetic patients, stratified according to the glycemic control. Methods: Thirty-five diabetic patients (17 type 1 and 18 type 2) and nine healthy individuals paired to patients in terms of sex and age were studied. Nine patients of each group were on inadequate glycemic controls. Intracellular cytokines were evaluated using flow cytometry. Cell cultures were stimulated with LPS to evaluate TNF-alpha and IL-6 or with PMA and lonomycin to evaluate IFN-gamma, IL-8 and IL-10 intracellular staining. Results: The percentages of CD33(+) cells bearing TNF-alpha and CD3(+) cells bearing IL-10 were increased in type 1 diabetic patients with inadequate glycemic control in relation to those with adequate control. In contrast, the percentage of CD3(+) cells bearing IL-8 was decreased in type 2 patients under inadequate glycemic control. Conclusions: The glycemic control is important for the detection of intracellular cytokines, and may contribute towards the susceptibility to infections in diabetic patients. (c) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is an intracellular enzyme that has been proposed to metabolize peptides within cells, thereby affecting antigen presentation and G protein-coupled receptor signal transduction. However, only a small number of intracellular substrates of EP24.15 have been reported previously. Here we have identified over 100 peptides in human embryonic kidney 293 (HEK293) cells that are derived from intracellular proteins; many but not all of these peptides are substrates or products of EP24.15. First, cellular peptides were extracted from HEK293 cells and incubated in vitro with purified EP24.15. Then the peptides were labeled with isotopic tags and analyzed by mass spectrometry to obtain quantitative data on the extent of cleavage. A related series of experiments tested the effect of overexpression of EP24.15 on the cellular levels of peptides in HEK293 cells. Finally, synthetic peptides that corresponded to 10 of the cellular peptides were incubated with purified EP24.15 in vitro, and the cleavage was monitored by high pressure liquid chromatography and mass spectrometry. Many of the EP24.15 substrates identified by these approaches are 9-11 amino acids in length, supporting the proposal that EP24.15 can function in the degradation of peptides that could be used for antigen presentation. However, EP24.15 also converts some peptides into products that are 8-10 amino acids, thus contributing to the formation of peptides for antigen presentation. In addition, the intracellular peptides described here are potential candidates to regulate protein interactions within cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LH increases the intracellular Ca(2+) concentration ([Ca(2+)](i)) in mice Leydig cells, in a process triggered by calcium influx through T-type Ca(2+) channels. Here we show that LH modulates both T-type Ca(2+) currents and [Ca(2+)]; transients through the effects of PKA and PKC. LH increases the peak calcium current (at -20 mV) by 40%. A similar effect is seen with PMA. The effect of LH is completely blocked by the PKA inhibitors H89 and a synthetic inhibitory peptide (IP-20), but only partially by chelerythrine (PKC inhibitor). LH and the blockers induced only minor changes in the voltage dependence of activation, inactivation or deactivation of the currents. Staurosporine (blocker of PKA and PKC) impaired the [Ca(2+)](i) changes induced by LH. A similar effect was seen with H89. Although PMA slowly increased the [Ca(2+)](i) the subsequent addition of LH still triggered the typical transients in [Ca(2+)](i). Chelerythrine also does not avoid the Ca(2+) transients, showing that blockage of PKC is not sufficient to inhibit the LH induced [Ca(2+)](i) rise. In summary, these two kinases are not only directly involved in promoting testosterone synthesis but also act on the overall calcium dynamics in Leydig cells, mostly through the activation of PKA by LH. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the CFTR Cl- channel inhibits epithelial Na+ channels (ENaC), according to studies on epithelial cells and overexpressing recombinant cells. Here we demonstrate that ENaC is inhibited during stimulation of the cystic fibrosis trans-membrance conductance regulator (CFTR) in Xenopus oocytes, independent of the experimental set-up and the magnitude of the whole-cell current. Inhibition of ENaC is augmented at higher CFTR Cl- currents. Similar to CFTR, ClC-0 Cl- currents also inhibit ENaC, as well as high extracellular Na+ and Cl- in partially permeabilized oocytes. Thus, inhibition of ENaC is not specific to CFTR and seems to be mediated by Cl-.