975 resultados para Intelligent Virtual Agents
Resumo:
In this thesis we aimed to explore the potential of gamification - defined as “the use of game elements in non-game contexts” [30] - in increasing children's (aged 5 to 6) engagement with the task. This is mainly due to the fact that our world is living a technological era, and videogames are an example of this engagement by being able to maintain children’s (and adults) engagement for hours straight. For the purpose of limiting complexity, we only addressed the feedback element by introducing it with an anthropomorphic virtual agent (human-like aspect), because research shows that virtual agents (VA’s) can influence behavioural change [17], or even induce emotions on humans both through the use of feedback provided and their facial expressions, which can interpreted in the same way as of humans’ [2]. By pairing the VA with the gamification concept, we wanted to 1) create a VA that is likely to be well-received by children (appearance and behaviour), and 2) have the immediate feedback that games have, so we can give children an assessment of their actions in real-time, as opposed to waiting for feedback from someone (traditional teaching), and with this give students more chances to succeed [32, 43]. Our final system consisted on a virtual environment, where children formed words that corresponded to a given image. In order to measure the impact that the VA had on engagement, the system was developed in two versions: one version of the system was limited to provide a simple feedback environment, where the VA provided feedback, by responding with simple phrases (i.e. “correct” or “incorrect”); for the second version, the VA had a more complex approach where it tried to encourage children to complete the word – a motivational feedback - even when they weren’t succeeding. Lastly we conducted a field study with two groups of children, where one group tested the version with the simple feedback, and the other group tested the ‘motivational’ version of the system. We used a quantitative approach to analyze the collected data that measured the engagement, based on the number of tasks (words) completed and time spent with system. The results of the evaluation showed that the use of motivational feedback may carry a positive effect on engaging children.
Resumo:
In this thesis we aimed to explore the potential of gamification - defined as “the use of game elements in non-game contexts” [30] - in increasing children's (aged 5 to 6) engagement with the task. This is mainly due to the fact that our world is living a technological era, and videogames are an example of this engagement by being able to maintain children’s (and adults) engagement for hours straight. For the purpose of limiting complexity, we only addressed the feedback element by introducing it with an anthropomorphic virtual agent (human-like aspect), because research shows that virtual agents (VA’s) can influence behavioural change [17], or even induce emotions on humans both through the use of feedback provided and their facial expressions, which can interpreted in the same way as of humans’ [2]. By pairing the VA with the gamification concept, we wanted to 1) create a VA that is likely to be well-received by children (appearance and behaviour), and 2) have the immediate feedback that games have, so we can give children an assessment of their actions in real-time, as opposed to waiting for feedback from someone (traditional teaching), and with this give students more chances to succeed [32, 43]. Our final system consisted on a virtual environment, where children formed words that corresponded to a given image. In order to measure the impact that the VA had on engagement, the system was developed in two versions: one version of the system was limited to provide a simple feedback environment, where the VA provided feedback, by responding with simple phrases (i.e. “correct” or “incorrect”); for the second version, the VA had a more complex approach where it tried to encourage children to complete the word – a motivational feedback - even when they weren’t succeeding. Lastly we conducted a field study with two groups of children, where one group tested the version with the simple feedback, and the other group tested the ‘motivational’ version of the system. We used a quantitative approach to analyze the collected data that measured the engagement, based on the number of tasks (words) completed and time spent with system. The results of the evaluation showed that the use of motivational feedback may carry a positive effect on engaging children.
Resumo:
This paper describes how MPEG-4 object based video (obv) can be used to allow selected objects to be inserted into the play-out stream to a specific user based on a profile derived for that user. The application scenario described here is for personalized product placement, and considers the value of this application in the current and evolving commercial media distribution market given the huge emphasis media distributors are currently placing on targeted advertising. This level of application of video content requires a sophisticated content description and metadata system (e.g., MPEG-7). The scenario considers the requirement for global libraries to provide the objects to be inserted into the streams. The paper then considers the commercial trading of objects between the libraries, video service providers, advertising agencies and other parties involved in the service. Consequently a brokerage of video objects is proposed based on negotiation and trading using intelligent agents representing the various parties. The proposed Media Brokerage Platform is a multi-agent system structured in two layers. In the top layer, there is a collection of coarse grain agents representing the real world players – the providers and deliverers of media contents and the market regulator profiler – and, in the bottom layer, there is a set of finer grain agents constituting the marketplace – the delegate agents and the market agent. For knowledge representation (domain, strategic and negotiation protocols) we propose a Semantic Web approach based on ontologies. The media components contents should be represented in MPEG-7 and the metadata describing the objects to be traded should follow a specific ontology. The top layer content providers and deliverers are modelled by intelligent autonomous agents that express their will to transact – buy or sell – media components by registering at a service registry. The market regulator profiler creates, according to the selected profile, a market agent, which, in turn, checks the service registry for potential trading partners for a given component and invites them for the marketplace. The subsequent negotiation and actual transaction is performed by delegate agents in accordance with their profiles and the predefined rules of the market.
Resumo:
This paper proposes an implementation, based on a multi-agent system, of a management system for automated negotiation of electricity allocation for charging electric vehicles (EVs) and simulates its performance. The widespread existence of charging infrastructures capable of autonomous operation is recognised as a major driver towards the mass adoption of EVs by mobility consumers. Eventually, conflicting requirements from both power grid and EV owners require automated middleman aggregator agents to intermediate all operations, for example, bidding and negotiation, between these parts. Multi-agent systems are designed to provide distributed, modular, coordinated and collaborative management systems; therefore, they seem suitable to address the management of such complex charging infrastructures. Our solution consists in the implementation of virtual agents to be integrated into the management software of a charging infrastructure. We start by modelling the multi-agent architecture using a federated, hierarchical layers setup and as well as the agents' behaviours and interactions. Each of these layers comprises several components, for example, data bases, decision-making and auction mechanisms. The implementation of multi-agent platform and auctions rules, and of models for battery dynamics, is also addressed. Four scenarios were predefined to assess the management system performance under real usage conditions, considering different types of profiles for EVs owners', different infrastructure configurations and usage and different loads on the utility grid (where real data from the concession holder of the Portuguese electricity transmission grid is used). Simulations carried with the four scenarios validate the performance of the modelled system while complying with all the requirements. Although all of these have been performed for one charging station alone, a multi-agent design may in the future be used for the higher level problem of distributing energy among charging stations. Copyright (c) 2014 John Wiley & Sons, Ltd.
Resumo:
WWW is a huge, open, heterogeneous system, however its contents data is mainly human oriented. The Semantic Web needs to assure that data is readable and “understandable” to intelligent software agents, though the use of explicit and formal semantics. Ontologies constitute a privileged artifact for capturing the semantic of the WWW data. Temporal and spatial dimensions are transversal to the generality of knowledge domains and therefore are fundamental for the reasoning process of software agents. Representing temporal/spatial evolution of concepts and their relations in OWL (W3C standard for ontologies) it is not straightforward. Although proposed several strategies to tackle this problem but there is still no formal and standard approach. This work main goal consists of development of methods/tools to support the engineering of temporal and spatial aspects in intelligent systems through the use of OWL ontologies. An existing method for ontology engineering, Fonte was used as framework for the development of this work. As main contributions of this work Fonte was re-engineered in order to: i) support the spatial dimension; ii) work with OWL Ontologies; iii) and support the application of Ontology Design Patterns. Finally, the capabilities of the proposed approach were demonstrated by engineering time and space in a demo ontology about football.
Resumo:
The Robocup Rescue Simulation System (RCRSS) is a dynamic system of multi-agent interaction, simulating a large-scale urban disaster scenario. Teams of rescue agents are charged with the tasks of minimizing civilian casualties and infrastructure damage while competing against limitations on time, communication, and awareness. This thesis provides the first known attempt of applying Genetic Programming (GP) to the development of behaviours necessary to perform well in the RCRSS. Specifically, this thesis studies the suitability of GP to evolve the operational behaviours required of each type of rescue agent in the RCRSS. The system developed is evaluated in terms of the consistency with which expected solutions are the target of convergence as well as by comparison to previous competition results. The results indicate that GP is capable of converging to some forms of expected behaviour, but that additional evolution in strategizing behaviours must be performed in order to become competitive. An enhancement to the standard GP algorithm is proposed which is shown to simplify the initial search space allowing evolution to occur much quicker. In addition, two forms of population are employed and compared in terms of their apparent effects on the evolution of control structures for intelligent rescue agents. The first is a single population in which each individual is comprised of three distinct trees for the respective control of three types of agents, the second is a set of three co-evolving subpopulations one for each type of agent. Multiple populations of cooperating individuals appear to achieve higher proficiencies in training, but testing on unseen instances raises the issue of overfitting.
Resumo:
The issue of how children learn the meaning of words is fundamental to developmental psychology. The recent attempts to develop or evolve efficient communication protocols among interacting robots or Virtual agents have brought that issue to a central place in more applied research fields, such as computational linguistics and neural networks, as well. An attractive approach to learning an object-word mapping is the so-called cross-situational learning. This learning scenario is based on the intuitive notion that a learner can determine the meaning of a word by finding something in common across all observed uses of that word. Here we show how the deterministic Neural Modeling Fields (NMF) categorization mechanism can be used by the learner as an efficient algorithm to infer the correct object-word mapping. To achieve that we first reduce the original on-line learning problem to a batch learning problem where the inputs to the NMF mechanism are all possible object-word associations that Could be inferred from the cross-situational learning scenario. Since many of those associations are incorrect, they are considered as clutter or noise and discarded automatically by a clutter detector model included in our NMF implementation. With these two key ingredients - batch learning and clutter detection - the NMF mechanism was capable to infer perfectly the correct object-word mapping. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A crescente complexidade das aplicações, a contínua evolução tecnológica e o uso cada vez mais disseminado de redes de computadores têm impulsionado os estudos referentes ao desenvolvimento de sistemas distribuídos. Como estes sistemas não podem ser facilmente desenvolvidos com tecnologias de software tradicionais por causa dos limites destas em lidar com aspectos relacionados, por exemplo, à distribuição e interoperabilidade, a tecnologia baseada em agentes parece ser uma resposta promissora para facilitar o desenvolvimento desses sistemas, pois ela foi planejada para suportar estes aspectos, dentre outros. Portanto, é necessário também que a arquitetura dos ambientes de desenvolvimento de software (ADS) evolua para suportar novas metodologias de desenvolvimento que ofereçam o suporte necessário à construção de softwares complexos, podendo também estar integrada a outras tecnologias como a de agentes. Baseada nesse contexto, essa dissertação tem por objetivo apresentar a especificação de uma arquitetura de um ADS distribuído baseada em agentes (DiSEN – Distributed Software Engineering Environment). Esse ambiente deverá fornecer suporte ao desenvolvimento de software distribuído, podendo estar em locais geograficamente distintos e também os desenvolvedores envolvidos poderão estar trabalhando de forma cooperativa. Na arquitetura proposta podem ser identificadas as seguintes camadas: dinâmica, que será responsável pelo gerenciamento da (re)configuração do ambiente em tempo de execução; aplicação, que terá, entre os elementos constituintes, a MDSODI (Metodologia para Desenvolvimento de Software Distribuído), que leva em consideração algumas características identificadas em sistemas distribuídos, já nas fases iniciais do projeto e o repositório para armazenamento dos dados necessários ao ambiente; e, infra-estrutura, que proverá suporte às tarefas de nomeação, persistência e concorrência e incorporará o canal de comunicação. Para validar o ambiente será realizada uma simulação da comunicação que pode ser necessária entre as partes constituintes do DiSEN, por meio da elaboração de diagramas de use case e de seqüência, conforme a notação MDSODI. Assim, as principais contribuições desse trabalho são: (i) especificação da arquitetura de um ADS distribuído que poderá estar distribuído geograficamente; incorporará a MDSODI; proporcionará desenvolvimento distribuído; possuirá atividades executadas por agentes; (ii) os agentes identificados para o DiSEN deverão ser desenvolvidos obedecendo ao padrão FIPA (Foundation for Intelligent Physical Agents); (iii) a identificação de um elemento que irá oferecer apoio ao trabalho cooperativo, permitindo a integração de profissionais, agentes e artefatos.
Resumo:
Die vorliegende Dissertation analysiert die Middleware- Technologien CORBA (Common Object Request Broker Architecture), COM/DCOM (Component Object Model/Distributed Component Object Model), J2EE (Java-2-Enterprise Edition) und Web Services (inklusive .NET) auf ihre Eignung bzgl. eng und lose gekoppelten verteilten Anwendungen. Zusätzlich werden primär für CORBA die dynamischen CORBA-Komponenten DII (Dynamic Invocation Interface), IFR (Interface Repository) und die generischen Datentypen Any und DynAny (dynamisches Any) im Detail untersucht. Ziel ist es, a. konkrete Aussagen über diese Komponenten zu erzielen, und festzustellen, in welchem Umfeld diese generischen Ansätze ihre Berechtigung finden. b. das zeitliche Verhalten der dynamischen Komponenten bzgl. der Informationsgewinnung über die unbekannten Objekte zu analysieren. c. das zeitliche Verhalten der dynamischen Komponenten bzgl. ihrer Kommunikation zu messen. d. das zeitliche Verhalten bzgl. der Erzeugung von generischen Datentypen und das Einstellen von Daten zu messen und zu analysieren. e. das zeitliche Verhalten bzgl. des Erstellens von unbekannten, d. h. nicht in IDL beschriebenen Datentypen zur Laufzeit zu messen und zu analysieren. f. die Vorzüge/Nachteile der dynamischen Komponenten aufzuzeigen, ihre Einsatzgebiete zu definieren und mit anderen Technologien wie COM/DCOM, J2EE und den Web Services bzgl. ihrer Möglichkeiten zu vergleichen. g. Aussagen bzgl. enger und loser Koppelung zu tätigen. CORBA wird als standardisierte und vollständige Verteilungsplattform ausgewählt, um die o. a. Problemstellungen zu untersuchen. Bzgl. seines dynamischen Verhaltens, das zum Zeitpunkt dieser Ausarbeitung noch nicht oder nur unzureichend untersucht wurde, sind CORBA und die Web Services richtungsweisend bzgl. a. Arbeiten mit unbekannten Objekten. Dies kann durchaus Implikationen bzgl. der Entwicklung intelligenter Softwareagenten haben. b. der Integration von Legacy-Applikationen. c. der Möglichkeiten im Zusammenhang mit B2B (Business-to-Business). Diese Problemstellungen beinhalten auch allgemeine Fragen zum Marshalling/Unmarshalling von Daten und welche Aufwände hierfür notwendig sind, ebenso wie allgemeine Aussagen bzgl. der Echtzeitfähigkeit von CORBA-basierten, verteilten Anwendungen. Die Ergebnisse werden anschließend auf andere Technologien wie COM/DCOM, J2EE und den Web Services, soweit es zulässig ist, übertragen. Die Vergleiche CORBA mit DCOM, CORBA mit J2EE und CORBA mit Web Services zeigen im Detail die Eignung dieser Technologien bzgl. loser und enger Koppelung. Desweiteren werden aus den erzielten Resultaten allgemeine Konzepte bzgl. der Architektur und der Optimierung der Kommunikation abgeleitet. Diese Empfehlungen gelten uneingeschränkt für alle untersuchten Technologien im Zusammenhang mit verteilter Verarbeitung.
Resumo:
An important part of human intelligence is the ability to use language. Humans learn how to use language in a society of language users, which is probably the most effective way to learn a language from the ground up. Principles that might allow an artificial agents to learn language this way are not known at present. Here we present a framework which begins to address this challenge. Our auto-catalytic, endogenous, reflective architecture (AERA) supports the creation of agents that can learn natural language by observation. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime mock television interview, using gesture and situated language. Results show that S1 can learn multimodal complex language and multimodal communicative acts, using a vocabulary of 100 words with numerous sentence formats, by observing unscripted interaction between the humans, with no grammar being provided to it a priori, and only high-level information about the format of the human interaction in the form of high-level goals of the interviewer and interviewee and a small ontology. The agent learns both the pragmatics, semantics, and syntax of complex sentences spoken by the human subjects on the topic of recycling of objects such as aluminum cans, glass bottles, plastic, and wood, as well as use of manual deictic reference and anaphora.
Resumo:
Los recientes avances tecnológicos han encontrado un potencial campo de explotación en la educación asistida por computador. A finales de los años 90 surgió un nuevo campo de investigación denominado Entornos Virtuales Inteligentes para el Entrenamiento y/o Enseñanza (EVIEs), que combinan dos áreas de gran complejidad: Los Entornos Virtuales (EVs) y los Sistemas de Tutoría Inteligente (STIs). De este modo, los beneficios de los entornos 3D (simulación de entornos de alto riesgo o entornos de difícil uso, etc.) pueden combinarse con aquéllos de un STIs (personalización de materias y presentaciones, adaptación de la estrategia de tutoría a las necesidades del estudiante, etc.) para proporcionar soluciones educativas/de entrenamiento con valores añadidos. El Modelo del Estudiante, núcleo de un SIT, representa el conocimiento y características del estudiante, y refleja el proceso de razonamiento del estudiante. Su complejidad es incluso superior cuando los STIs se aplican a EVs porque las nuevas posibilidades de interacción proporcionadas por estos entornos deben considerarse como nuevos elementos de información clave para el modelado del estudiante, incidiendo en todo el proceso educativo: el camino seguido por el estudiante durante su navegación a través de escenarios 3D; el comportamiento no verbal tal como la dirección de la mirada; nuevos tipos de pistas e instrucciones que el módulo de tutoría puede proporcionar al estudiante; nuevos tipos de preguntas que el estudiante puede formular, etc. Por consiguiente, es necesario que la estructura de los STIs, embebida en el EVIE, se enriquezca con estos aspectos, mientras mantiene una estructura clara, estructurada, y bien definida. La mayoría de las aproximaciones al Modelo del Estudiante en STIs y en IVETs no consideran una taxonomía de posibles conocimientos acerca del estudiante suficientemente completa. Además, la mayoría de ellas sólo tienen validez en ciertos dominios o es difícil su adaptación a diferentes STIs. Para vencer estas limitaciones, hemos propuesto, en el marco de esta tesis doctoral, un nuevo mecanismo de Modelado del Estudiante basado en la Ingeniería Ontológica e inspirado en principios pedagógicos, con un modelo de datos sobre el estudiante amplio y flexible que facilita su adaptación y extensión para diferentes STIs y aplicaciones de aprendizaje, además de un método de diagnóstico con capacidades de razonamiento no monótono. El método de diagnóstico es capaz de inferir el estado de los objetivos de aprendizaje contenidos en el SIT y, a partir de él, el estado de los conocimientos del estudiante durante su proceso de aprendizaje. La aproximación almodelado del estudiante propuesta ha sido implementada e integrada en un agente software (el agente de modelado del estudiante) dentro de una plataforma software existente para el desarrollo de EVIEs denominadaMAEVIF. Esta plataforma ha sido diseñada para ser fácilmente configurable para diferentes aplicaciones de aprendizaje. El modelado del estudiante presentado ha sido implementado e instanciado para dos tipos de entornos de aprendizaje: uno para aprendizaje del uso de interfaces gráficas de usuario en una aplicación software y para un Entorno Virtual para entrenamiento procedimental. Además, se ha desarrollado una metodología para guiar en la aplicación del esta aproximación de modelado del estudiante a cada sistema concreto.---ABSTRACT---Recent technological advances have found a potential field of exploitation in computeraided education. At the end of the 90’s a new research field emerged, the so-called Intelligent Virtual Environments for Training and/or Education (IVETs), which combines two areas of great complexity: Virtual Environments (VE) and Intelligent Tutoring Systems (ITS). In this way, the benefits of 3D environments (simulation of high risk or difficult-to-use environments, etc.) may be combined with those of an ITS (content and presentation customization, adaptation of the tutoring strategy to the student requirements, etc.) in order to provide added value educational/training solutions. The StudentModel, core of an ITS, represents the student’s knowledge and characteristics, and reflects the student’s reasoning process. Its complexity is even higher when the ITSs are applied on VEs because the new interaction possibilities offered by these environments must be considered as new key information pieces for student modelling, impacting all the educational process: the path followed by the student during their navigation through 3D scenarios; non-verbal behavior such as gaze direction; new types of hints or instructions that the tutoring module can provide to the student; new question types that the student can ask, etc. Thus, it is necessary for the ITS structure, which is embedded in the IVET, to be enriched by these aspects, while keeping a clear, structured and well defined architecture. Most approaches to SM on ITSs and IVETs don’t consider a complete enough taxonomy of possible knowledge about the student. In addition, most of them have validity only in certain domains or they are hard to be adapted for different ITSs. In order to overcome these limitations, we have proposed, in the framework of this doctoral research project, a newStudentModeling mechanism that is based onOntological Engineering and inspired on pedagogical principles, with a wide and flexible data model about the student that facilitates its adaptation and extension to different ITSs and learning applications, as well as a rich diagnosis method with non-monotonic reasoning capacities. The diagnosis method is able to infer the state of the learning objectives encompassed by the ITS and, fromit, the student’s knowledge state during the student’s process of learning. The proposed student modelling approach has been implemented and integrated in a software agent (the student modeling agent) within an existing software platform for the development of IVETs called MAEVIF. This platform was designed to be easily configurable for different learning applications. The proposed student modeling has been implemented and it has been instantiated for two types of learning environments: one for learning to use the graphical user interface of a software application and a Virtual Environment for procedural training. In addition, a methodology to guide on the application of this student modeling approach to each specific system has been developed.
Resumo:
Tradicionalmente, los entornos virtuales se han relacionado o vinculado de forma muy estrecha con campos como el diseño de escenarios tridimensionales o los videojuegos; dejando poco margen a poder pensar en sus aplicaciones en otros ámbitos. Sin embargo, estas tendencias pueden cambiar en tanto se demuestre que las aplicaciones y ventajas de estas facilidades software, se pueden extrapolar a su uso en el ámbito de la enseñanza y el aprendizaje. Estas aplicaciones son los conocidos como Entornos Virtuales Inteligentes (EVI); los cuales, tratan de usar un entorno virtual para llevar a cabo labores de enseñanza y tutoría, aportando ventajas como simulación de entornos peligrosos o tutorización personalizada; cosa que no podemos encontrar en la mayoría de los casos de las situaciones de enseñanza reales. Este trabajo trata de dar solución a una de las problemáticas que se plantean a la hora de trabajar con cualquier entorno virtual con el que nos encontremos y prepararlo para su cometido, sobre todo en aquellos enfocados a la enseñanza: dotar de forma automática e inteligente de una semántica propia a cada uno de los objetos que se encuentran en un entorno virtual y almacenar esta información para su posterior consulta o uso para otras tareas. Esto quiere decir que el objetivo principal de este trabajo, es el proceso de recolección de información que se considera importante de los objetos de los entornos virtuales, como pueden ser sus aspectos de la forma, tamaño o color. Aspectos que, por otra parte, son realmente importantes para poder caracterizar los objetos y hacerlos únicos en un entorno virtual donde, a priori, todos los objetos son los mismos a ojos de un ordenador. Este trabajo que puede parecer trivial en un principio, no lo es tanto; y servirá de sustento fundamental para que otras aplicaciones futuras o ya existentes puedan realizar sus tareas. Una de estas tareas pudiera ser la generación de indicaciones en lenguaje natural para guiar a usuarios a localizar objetos en un entorno virtual, como es el caso del proyecto LORO sobre el que se engloba este trabajo. Algunos ejemplos de uso de esta tarea pueden ser desde ayudar a cualquier usuario a encontrar sus llaves en su propia casa a ayudar a un cirujano a localizar cierta herramienta en un quirófano. Para ello, es indispensable conocer la semántica e información relevante de cada uno de los objetos que se presentan en la escena y diferenciarlos claramente del resto. La solución propuesta se trata de una completa aplicación integrada en el motor de videojuegos y escenarios 3D de mayor soporte del mundo como es Unity 3D, el cual se interrelaciona con ontologías para poder guardar la información de los objetos de cada escena. Esto hace que la aplicación tenga una potencial difusión, gracias a las herramientas antes mencionadas para su desarrollo y a que está pensada para tanto el usuario experto como el usuario común.---ABSTRACT---Traditionally, virtual environments have been related to tridimensional design and videogames; leaving a little margin to think about its applications in other fields. However, this tendencies can be changed as soon as it is proven that the applications and advantages of this software can be taken to the learning and teaching environment. This applications are known as intelligent virtual environments, these use the virtual environment to perform teaching and tutoring tasks; tasks we cannot find in most real life teaching situations. This project aims to give a solution to one of the problematics that appears when someone works with any virtual environments we may encounter and prepare it for its duty, mainly those environments dedicated to teaching: automatically and intelligently give its own semantic to the objects that are in any virtual environment and save this information for its posterior query or use in other tasks. The main purpose of this project is the information recollection process that considers the different important facts about the objects that are in the virtual environments, such as their shape, size or color. Facts that are very important for characterizing the objects; to make them unique in the environment where the objects are all the same to the computer’s eye. This project may seem banal in the beginning, but it is not, it will be the fundamental base for future applications. One of this applications may be a natural language indicator generator for guiding users to locate objects in a virtual environment, such as the LORO project, where this project is included. Some examples of the use of this task are: helping any user to find the keys of his house, helping a surgeon to find a tool in an operation room… For this goals, it is very important to know the semantics and the relevant information of each object of the scenario and differentiate each one of them from the rest. The solution for this proposal is a fully integrated application in the videogame and Unity 3D engine that is related to ontologies so it can save the object’s information in every scenario. The previously mentioned tools, as well as the idea that this application is made for an expert user as well as for a common user, make the application more spreadable.
Resumo:
El auge y penetración de las nuevas tecnologías junto con la llamada Web Social están cambiando la forma en la que accedemos a la medicina. Cada vez más pacientes y profesionales de la medicina están creando y consumiendo recursos digitales de contenido clínico a través de Internet, surgiendo el problema de cómo asegurar la fiabilidad de estos recursos. Además, un nuevo concepto está apareciendo, el de pervasive healthcare o sanidad ubicua, motivado por pacientes que demandan un acceso a los servicios sanitarios en todo momento y en todo lugar. Este nuevo escenario lleva aparejado un problema de confianza en los proveedores de servicios sanitarios. Las plataformas de eLearning se están erigiendo como paradigma de esta nueva Medicina 2.0 ya que proveen un servicio abierto a la vez que controlado/supervisado a recursos digitales, y facilitan las interacciones y consultas entre usuarios, suponiendo una buena aproximación para esta sanidad ubicua. En estos entornos los problemas de fiabilidad y confianza pueden ser solventados mediante la implementación de mecanismos de recomendación de recursos y personas de manera confiable. Tradicionalmente las plataformas de eLearning ya cuentan con mecanismos de recomendación, si bien están más enfocados a la recomendación de recursos. Para la recomendación de usuarios es necesario acudir a mecanismos más elaborados como son los sistemas de confianza y reputación (trust and reputation) En ambos casos, tanto la recomendación de recursos como el cálculo de la reputación de los usuarios se realiza teniendo en cuenta criterios principalmente subjetivos como son las opiniones de los usuarios. En esta tesis doctoral proponemos un nuevo modelo de confianza y reputación que combina evaluaciones automáticas de los recursos digitales en una plataforma de eLearning, con las opiniones vertidas por los usuarios como resultado de las interacciones con otros usuarios o después de consumir un recurso. El enfoque seguido presenta la novedad de la combinación de una parte objetiva con otra subjetiva, persiguiendo mitigar el efecto de posibles castigos subjetivos por parte de usuarios malintencionados, a la vez que enriquecer las evaluaciones objetivas con información adicional acerca de la capacidad pedagógica del recurso o de la persona. El resultado son recomendaciones siempre adaptadas a los requisitos de los usuarios, y de la máxima calidad tanto técnica como educativa. Esta nueva aproximación requiere una nueva herramienta para su validación in-silico, al no existir ninguna aplicación que permita la simulación de plataformas de eLearning con mecanismos de recomendación de recursos y personas, donde además los recursos sean evaluados objetivamente. Este trabajo de investigación propone pues una nueva herramienta, basada en el paradigma de programación orientada a agentes inteligentes para el modelado de comportamientos complejos de usuarios en plataformas de eLearning. Además, la herramienta permite también la simulación del funcionamiento de este tipo de entornos dedicados al intercambio de conocimiento. La evaluación del trabajo propuesto en este documento de tesis se ha realizado de manera iterativa a lo largo de diferentes escenarios en los que se ha situado al sistema frente a una amplia gama de comportamientos de usuarios. Se ha comparado el rendimiento del modelo de confianza y reputación propuesto frente a dos modos de recomendación tradicionales: a) utilizando sólo las opiniones subjetivas de los usuarios para el cálculo de la reputación y por extensión la recomendación; y b) teniendo en cuenta sólo la calidad objetiva del recurso sin hacer ningún cálculo de reputación. Los resultados obtenidos nos permiten afirmar que el modelo desarrollado mejora la recomendación ofrecida por las aproximaciones tradicionales, mostrando una mayor flexibilidad y capacidad de adaptación a diferentes situaciones. Además, el modelo propuesto es capaz de asegurar la recomendación de nuevos usuarios entrando al sistema frente a la nula recomendación para estos usuarios presentada por el modo de recomendación predominante en otras plataformas que basan la recomendación sólo en las opiniones de otros usuarios. Por último, el paradigma de agentes inteligentes ha probado su valía a la hora de modelar plataformas virtuales complejas orientadas al intercambio de conocimiento, especialmente a la hora de modelar y simular el comportamiento de los usuarios de estos entornos. La herramienta de simulación desarrollada ha permitido la evaluación del modelo de confianza y reputación propuesto en esta tesis en una amplia gama de situaciones diferentes. ABSTRACT Internet is changing everything, and this revolution is especially present in traditionally offline spaces such as medicine. In recent years health consumers and health service providers are actively creating and consuming Web contents stimulated by the emergence of the Social Web. Reliability stands out as the main concern when accessing the overwhelming amount of information available online. Along with this new way of accessing the medicine, new concepts like ubiquitous or pervasive healthcare are appearing. Trustworthiness assessment is gaining relevance: open health provisioning systems require mechanisms that help evaluating individuals’ reputation in pursuit of introducing safety to these open and dynamic environments. Technical Enhanced Learning (TEL) -commonly known as eLearning- platforms arise as a paradigm of this Medicine 2.0. They provide an open while controlled/supervised access to resources generated and shared by users, enhancing what it is being called informal learning. TEL systems also facilitate direct interactions amongst users for consultation, resulting in a good approach to ubiquitous healthcare. The aforementioned reliability and trustworthiness problems can be faced by the implementation of mechanisms for the trusted recommendation of both resources and healthcare services providers. Traditionally, eLearning platforms already integrate recommendation mechanisms, although this recommendations are basically focused on providing an ordered classifications of resources. For users’ recommendation, the implementation of trust and reputation systems appears as the best solution. Nevertheless, both approaches base the recommendation on the information from the subjective opinions of other users of the platform regarding the resources or the users. In this PhD work a novel approach is presented for the recommendation of both resources and users within open environments focused on knowledge exchange, as it is the case of TEL systems for ubiquitous healthcare. The proposed solution adds the objective evaluation of the resources to the traditional subjective personal opinions to estimate the reputation of the resources and of the users of the system. This combined measure, along with the reliability of that calculation, is used to provide trusted recommendations. The integration of opinions and evaluations, subjective and objective, allows the model to defend itself against misbehaviours. Furthermore, it also allows ‘colouring’ cold evaluation values by providing additional quality information such as the educational capacities of a digital resource in an eLearning system. As a result, the recommendations are always adapted to user requirements, and of the maximum technical and educational quality. To our knowledge, the combination of objective assessments and subjective opinions to provide recommendation has not been considered before in the literature. Therefore, for the evaluation of the trust and reputation model defined in this PhD thesis, a new simulation tool will be developed following the agent-oriented programming paradigm. The multi-agent approach allows an easy modelling of independent and proactive behaviours for the simulation of users of the system, conforming a faithful resemblance of real users of TEL platforms. For the evaluation of the proposed work, an iterative approach have been followed, testing the performance of the trust and reputation model while providing recommendation in a varied range of scenarios. A comparison with two traditional recommendation mechanisms was performed: a) using only users’ past opinions about a resource and/or other users; and b) not using any reputation assessment and providing the recommendation considering directly the objective quality of the resources. The results show that the developed model improves traditional approaches at providing recommendations in Technology Enhanced Learning (TEL) platforms, presenting a higher adaptability to different situations, whereas traditional approaches only have good results under favourable conditions. Furthermore the promotion period mechanism implemented successfully helps new users in the system to be recommended for direct interactions as well as the resources created by them. On the contrary OnlyOpinions fails completely and new users are never recommended, while traditional approaches only work partially. Finally, the agent-oriented programming (AOP) paradigm has proven its validity at modelling users’ behaviours in TEL platforms. Intelligent software agents’ characteristics matched the main requirements of the simulation tool. The proactivity, sociability and adaptability of the developed agents allowed reproducing real users’ actions and attitudes through the diverse situations defined in the evaluation framework. The result were independent users, accessing to different resources and communicating amongst them to fulfil their needs, basing these interactions on the recommendations provided by the reputation engine.
Resumo:
From a manufacturing perspective, the efficiency of manufacturing operations (such as process planning and production scheduling) are the key element for enhancing manufacturing competence. Process planning and production scheduling functions have been traditionally treated as two separate activities, and have resulted in a range of inefficiencies. These include infeasible process plans, non-available/overloaded resources, high production costs, long production lead times, and so on. Above all, it is unlikely that the dynamic changes can be efficiently dealt with. Despite much research has been conducted to integrate process planning and production scheduling to generate optimised solutions to improve manufacturing efficiency, there is still a gap to achieve the competence required for the current global competitive market. In this research, the concept of multi-agent system (MAS) is adopted as a means to address the aforementioned gap. A MAS consists of a collection of intelligent autonomous agents able to solve complex problems. These agents possess their individual objectives and interact with each other to fulfil the global goal. This paper describes a novel use of an autonomous agent system to facilitate the integration of process planning and production scheduling functions to cope with unpredictable demands, in terms of uncertainties in product mix and demand pattern. The novelty lies with the currency-based iterative agent bidding mechanism to allow process planning and production scheduling options to be evaluated simultaneously, so as to search for an optimised, cost-effective solution. This agent based system aims to achieve manufacturing competence by means of enhancing the flexibility and agility of manufacturing enterprises.
Resumo:
International audience