877 resultados para Individual-based modeling
Resumo:
We present through the use of Petri Nets, modeling techniques for digital systems realizable using FPGAs. These Petri Net models are used for logic validation at the logic design phase. The technique is illustrated by modeling practical circuits. Further, the utility of the technique with respect to timing analysis of the modeled digital systems is considered. Copyright (C) 1997 Elsevier Science Ltd
Resumo:
Overland rain retrieval using spaceborne microwave radiometer offers a myriad of complications as land presents itself as a radiometrically warm and highly variable background. Hence, land rainfall algorithms of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) have traditionally incorporated empirical relations of microwave brightness temperature (Tb) with rain rate, rather than relying on physically based radiative transfer modeling of rainfall (as implemented in the TMI ocean algorithm). In this paper, sensitivity analysis is conducted using the Spearman rank correlation coefficient as benchmark, to estimate the best combination of TMI low-frequency channels that are highly sensitive to the near surface rainfall rate from the TRMM Precipitation Radar (PR). Results indicate that the TMI channel combinations not only contain information about rainfall wherein liquid water drops are the dominant hydrometeors but also aid in surface noise reduction over a predominantly vegetative land surface background. Furthermore, the variations of rainfall signature in these channel combinations are not understood properly due to their inherent uncertainties and highly nonlinear relationship with rainfall. Copula theory is a powerful tool to characterize the dependence between complex hydrological variables as well as aid in uncertainty modeling by ensemble generation. Hence, this paper proposes a regional model using Archimedean copulas, to study the dependence of TMI channel combinations with respect to precipitation, over the land regions of Mahanadi basin, India, using version 7 orbital data from the passive and active sensors on board TRMM, namely, TMI and PR. Studies conducted for different rainfall regimes over the study area show the suitability of Clayton and Gumbel copulas for modeling convective and stratiform rainfall types for the majority of the intraseasonal months. Furthermore, large ensembles of TMI Tb (from the most sensitive TMI channel combination) were generated conditional on various quantiles (25th, 50th, 75th, and 95th) of the convective and the stratiform rainfall. Comparatively greater ambiguity was observed to model extreme values of the convective rain type. Finally, the efficiency of the proposed model was tested by comparing the results with traditionally employed linear and quadratic models. Results reveal the superior performance of the proposed copula-based technique.
Resumo:
Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed.
Resumo:
This paper presents the steps and the challenges for implementing analytical, physics-based models for the insulated gate bipolar transistor (IGBT) and the PIN diode in hardware and more specifically in field programmable gate arrays (FPGAs). The models can be utilised in hardware co-simulation of complex power electronic converters and entire power systems in order to reduce the simulation time without compromising the accuracy of results. Such a co-simulation allows reliable prediction of the system's performance as well as accurate investigation of the power devices' behaviour during operation. Ultimately, this will allow application-specific optimisation of the devices' structure, circuit topologies as well as enhancement of the control and/or protection schemes.
Resumo:
The main purpose of this paper is to provide the core description of the modelling exercise within the Shelf Edge Advection Mortality And Recruitment (SEAMAR) programme. An individual-based model (IBM) was developed for the prediction of year-to-year survival of the early life-history stages of mackerel (Scomber scombrus) in the eastern North Atlantic. The IBM is one of two components of the model system. The first component is a circulation model to provide physical input data for the IBM. The circulation model is a geographical variant of the HAMburg Shelf Ocean Model (HAMSOM). The second component is the IBM, which is an i-space configuration model in which large numbers of individuals are followed as discrete entities to simulate the transport, growth and mortality of mackerel eggs, larvae and post-larvae. Larval and post-larval growth is modelled as a function of length, temperature and food distribution; mortality is modelled as a function of length and absolute growth rate. Each particle is considered as a super-individual representing 10 super(6) eggs at the outset of the simulation, and then declining according to the mortality function. Simulations were carried out for the years 1998-2000. Results showed concentrations of particles at Porcupine Bank and the adjacent Irish shelf, along the Celtic Sea shelf-edge, and in the southern Bay of Biscay. High survival was observed only at Porcupine and the adjacent shelf areas, and, more patchily, around the coastal margin of Biscay. The low survival along the shelf-edge of the Celtic Sea was due to the consistently low estimates of food availability in that area.
Resumo:
An individual-based model (IBM) for the simulation of year-to-year survival during the early life-history stages of the north-east Atlantic stock of mackerel (Scomber scombrus) was developed within the EU funded Shelf-Edge Advection, Mortality and Recruitment (SEAMAR) programme. The IBM included transport, growth and survival and was used to track the passive movement of mackerel eggs, larvae and post-larvae and determine their distribution and abundance after approximately 2 months of drift. One of the main outputs from the IBM, namely distributions and numbers of surviving post-larvae, are compared with field data as recruit (age-0/age-1 juveniles) distribution and abundance for the years 1998, 1999 and 2000. The juvenile distributions show more inter-annual and spatial variability than the modelled distributions of survivors; this may be due to the restriction of using the same initial egg distribution for all 3 yr of simulation. The IBM simulations indicate two main recruitment areas for the north-east Atlantic stock of mackerel, these being Porcupine Bank and the south-eastern Bay of Biscay. These areas correspond to areas of high juvenile catches, although the juveniles generally have a more widespread distribution than the model simulations. The best agreement between modelled data and field data for distribution (juveniles and model survivors) is for the year 1998. The juvenile catches in different representative nursery areas are totalled to give a field abundance index (FAI). This index is compared with a model survivor index (MSI) which is calculated from the total of survivors for the whole spawning season. The MSI compares favourably with the FAI for 1998 and 1999 but not for 2000; in this year, juvenile catches dropped sharply compared with the previous years but there was no equivalent drop in modelled survivors.
Resumo:
Absolute atomic oxygen ground state densities in a radio-frequency driven atmospheric pressure plasma jet, operated in a helium-oxygen mixture, are determined using diagnostic based modeling. One-dimensional numerical simulations of the electron dynamics are combined with time integrated optical emission spectroscopy. The population dynamics of the upper O 3p 3P (l=844 nm) atomic oxygen state is governed by direct electron impact excitation, dissociative excitation, radiation losses, and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through comparison with the upper Ar 2p1 (l=750.4 nm) state. Results for spatial profiles and power variations are presented and show excellent quantitative agreement with independent two-photon laser-induced fluorescence measurements.
Resumo:
Diagnostic-based modeling (DBM) actively combines complementary advantages of numerical plasma simulations and relatively simple optical emission spectroscopy (OES). DBM is applied to determine spatial absolute atomic oxygen ground-state density profiles in a micro atmospheric-pressure plasma jet operated in He–O2. A 1D fluid model with semi-kinetic treatment of the electrons yields detailed information on the electron dynamics and the corresponding spatio-temporal electron energy distribution function. Benchmarking this time- and space-resolved simulation with phase-resolved OES (PROES) allows subsequent derivation of effective excitation rates as the basis for DBM. The population dynamics of the upper O(3p3P) oxygen state (? = 844 nm) is governed by direct electron impact excitation, dissociative excitation, radiation losses, and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through tracer comparison with the upper Ar(2p1) state (? = 750.4 nm). The resulting spatial profile for the absolute atomic oxygen density shows an excellent quantitative agreement to a density profile obtained by two-photon absorption laser-induced fluorescence spectroscopy.