936 resultados para In-vehicle system
Resumo:
The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. Experienced drivers have better hazard perception ability compared to inexperienced drivers. Eye gaze patterns have been found to be an indicator of the driver's competency level. The aim of this paper is to develop an in-vehicle system which correlates information about the driver's gaze and vehicle dynamics, which is then used to assist driver trainers in assessing driving competency. This system allows visualization of the complete driving manoeuvre data on interactive maps. It uses an eye tracker and perspective projection algorithms to compute the depth of gaze and plots it on Google maps. This interactive map also features the trajectory of the vehicle and turn indicator usage. This system allows efficient and user friendly analysis of the driving task. It can be used by driver trainers and trainees to understand objectively the risks encountered during driving manoeuvres. This paper presents a prototype that plots the driver's eye gaze depth and direction on an interactive map along with the vehicle dynamics information. This prototype will be used in future to study the difference in gaze patterns in novice and experienced drivers prior to a certain manoeuvre.
Resumo:
Driver distraction continues to receive considerable research interest but the drivers‟ perspective is less well documented. The current research focussed on identifying features that are salient to drivers in their risk perception judgements for 19 in-vehicle distractions. Both technological (e.g. mobile phones) and non technological (e.g. eating) distractions were considered. Analysis identified that males and females were rating 7 of the 19 distractions differently. The current paper presents the data for the female participants (n = 84). Multidimensional scaling analysis identified three main dimensions contributing to female drivers‟ risk perception judgements. Qualitative characteristics such as the level of exposure to a distraction were identified as significant contributors to drivers‟ risk perception as well as features inherent in the distractions such as distractions being related to communication. This exploratory work contributes to better understanding female drivers‟ perceptions of risk associated with in-vehicle distractions. Understanding the drivers‟ perspective can help guide the development of road safety messages and ultimately improve the impact of such messages.
Resumo:
Older drivers represent the fastest growing segment of the road user population. Cognitive and physiological capabilities diminishes with ages. The design of future in-vehicle interfaces have to take into account older drivers' needs and capabilities. Older drivers have different capabilities which impact on their driving patterns and subsequently on road crash patterns. New in-vehicle technology could improve safety, comfort and maintain elderly people's mobility for longer. Existing research has focused on the ergonomic and Human Machine Interface (HMI) aspects of in-vehicle technology to assist the elderly. However there is a lack of comprehensive research on identifying the most relevant technology and associated functionalities that could improve older drivers' road safety. To identify future research priorities for older drivers, this paper presents: (i) a review of age related functional impairments, (ii) a brief description of some key characteristics of older driver crashes and (iii) a conceptualisation of the most relevant technology interventions based on traffic psychology theory and crash data.
Resumo:
The Howard East rural area has experienced a rapid growth of small block subdivisions and horticulture over the last 40 years, which has been based on groundwater supply. Early bores in the area provide part of the water supply for Darwin City and are maintained and monitored by NT Power & Water Corporation. The Territory government (NRETAS) has established a monitoring network, and now 48 bores are monitored. However, in the area there are over 2700 private bores that are unregulated.Although NRETAS has both FDM and FEM simulations for the region, community support for potential regulation is sought. To improve stakeholder understanding of the resource QUT was retained by the TRaCKconsortium to develop a 3D visualisation of the groundwater system.
Resumo:
An algorithm based on the concept of combining Kalman filter and Least Error Square (LES) techniques is proposed in this paper. The algorithm is intended to estimate signal attributes like amplitude, frequency and phase angle in the online mode. This technique can be used in protection relays, digital AVRs, DGs, DSTATCOMs, FACTS and other power electronics applications. The Kalman filter is modified to operate on a fictitious input signal and provides precise estimation results insensitive to noise and other disturbances. At the same time, the LES system has been arranged to operate in critical transient cases to compensate the delay and inaccuracy identified because of the response of the standard Kalman filter. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations and a laboratory test are presented to highlight the usefulness of the proposed method. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.
Resumo:
With the advent of large-scale wind farms and their integration into electrical grids, more uncertainties, constraints and objectives must be considered in power system development. It is therefore necessary to introduce risk-control strategies into the planning of transmission systems connected with wind power generators. This paper presents a probability-based multi-objective model equipped with three risk-control strategies. The model is developed to evaluate and enhance the ability of the transmission system to protect against overload risks when wind power is integrated into the power system. The model involves: (i) defining the uncertainties associated with wind power generators with probability measures and calculating the probabilistic power flow with the combined use of cumulants and Gram-Charlier series; (ii) developing three risk-control strategies by specifying the smallest acceptable non-overload probability for each branch and the whole system, and specifying the non-overload margin for all branches in the whole system; (iii) formulating an overload risk index based on the non-overload probability and the non-overload margin defined; and (iv) developing a multi-objective transmission system expansion planning (TSEP) model with the objective functions composed of transmission investment and the overload risk index. The presented work represents a superior risk-control model for TSEP in terms of security, reliability and economy. The transmission expansion planning model with the three risk-control strategies demonstrates its feasibility in the case study using two typical power systems
Resumo:
Load modeling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is through parametric sensitivity analysis. Load ranking provides an effective measure of such impact. Traditionally, load ranking is based on either static or dynamic load model alone. In this paper, composite load model based load ranking framework is proposed. It enables comprehensive investigation into load modeling impacts on system stability considering the dynamic interactions between load and system dynamics. The impact of load composition on the overall sensitivity and therefore on ranking of the load is also investigated. Dynamic simulations are performed to further elucidate the results obtained through sensitivity based load ranking approach.
Resumo:
The increasing global distribution of automobiles necessitates that the design of In-vehicle Information Systems (IVIS) is appropriate for the regions to which they are being exported. Differences between regions such as culture, environment and traffic context can influence the needs, usability and acceptance of IVIS. This paper describes two studies aimed at identifying regional differences in IVIS design needs and preferences across drivers from Australia and China to determine the impact of any differences on IVIS design. Using a questionnaire and interaction clinics, the influence of cultural values and driving patterns on drivers' preferences for, and comprehension of, surface- and interaction-level aspects of IVIS interfaces was explored. Similarities and differences were found between the two regional groups in terms of preferences for IVIS input control types and labels and in the comprehension of IVIS functions. Specifically, Chinese drivers preferred symbols and Chinese characters over English words and were less successful (compared to Australians) at comprehending English abbreviations, particularly for complex IVIS functions. Implications in terms of the current trend to introduce Western-styled interfaces into other regions with little or no adaptation are discussed.
Resumo:
In this paper, problems are described which are related to the ergonomic assessment of vehicle package design in vehicle systems engineering. The traditional approach, using questionnaire techniques for a subjective assessment of comfort related to package design, is compared to a biomechanical approach. An example is given for ingress design. The biomechanical approach is based upon objective postural data. The experimental setup for the study is described and methods used for the biomechanical analysis are explained. Because the biomechanic assessment requires not only a complex experimental setup but also time consuming data processing, a systematic reduction and preparation of biomechanic data for classification with an Artificial Neural Network significantly improves the economy of the biomechanical method.
Resumo:
Musculoskeletal pain is commonly reported by police officers. A potential cause of officer discomfort is a mismatch between vehicle seats and the method used for carrying appointments. Twenty-five police officers rated their discomfort while seated in: (1) a standard police vehicle seat, and (2) a vehicle seat custom-designed for police use. Discomfort was recorded in both seats while wearing police appointments on: (1) a traditional appointments belt, and (2) a load-bearing vest / belt combination (LBV). Sitting in the standard vehicle seat and carrying appointments on a traditional appointments belt were both associated with significantly elevated discomfort. Four vehicle seat features were most implicated as contributing to discomfort: back rest bolster prominence; lumbar region support; seat cushion width; and seat cushion bolster depth. Authorising the carriage of appointments using a LBV is a lower cost solution with potential to reduce officer discomfort. Furthermore, the introduction of custom-designed vehicle seats should be considered.
Resumo:
The conflicts in Iraq and Afghanistan have been epitomized by the insurgents’ use of the improvised explosive device against vehicle-borne security forces. These weapons, capable of causing multiple severely injured casualties in a single incident, pose the most prevalent single threat to Coalition troops operating in the region. Improvements in personal protection and medical care have resulted in increasing numbers of casualties surviving with complex lower limb injuries, often leading to long-term disability. Thus, there exists an urgent requirement to investigate and mitigate against the mechanism of extremity injury caused by these devices. This will necessitate an ontological approach, linking molecular, cellular and tissue interaction to physiological dysfunction. This can only be achieved via a collaborative approach between clinicians, natural scientists and engineers, combining physical and numerical modelling tools with clinical data from the battlefield. In this article, we compile existing knowledge on the effects of explosions on skeletal injury, review and critique relevant experimental and computational research related to lower limb injury and damage and propose research foci required to drive the development of future mitigation technologies.
Resumo:
Bandwidths and offsets are important components in vehicle traffic control strategies. This article proposes new methods for quantifying and selecting them. Bandwidth is the amount of green time available for vehicles to travel through adjacent intersections without the requirement to stop at the second traffic light. The offset is the difference between the starting-time of ``green'' periods at two adjacent intersections, along a given route. The core ideas in this article were developed during the 2013 Maths and Industry Study Group in Brisbane, Australia. Analytical expressions for computing bandwidth, as a function of offset, are developed. An optimisation model, for selecting offsets across an arterial, is proposed. Arterial roads were focussed upon, as bandwidth and offset have a greater impact on these types of road as opposed to a full traffic network. A generic optimisation-simulation approach is also proposed to refine an initial starting solution, according to a specified metric. A metric that reflects the number of stops, and the distance between stops, is proposed to explicitly reduce the dissatisfaction of road users, and to implicitly reduce fuel consumption and emissions. Conceptually the optimisation-simulation approach is superior as it handles real-life complexities and is a global optimisation approach. The models and equations in this article can be used in road planning and traffic control.
Resumo:
Aggressive behavior at the steering wheel has been indicated as a contributing factor in a majority of crashes and anger has been compared to alcohol impairment in terms of probability to cause a crash. It has been shown that being in a state of anger or excitement while driving can decrease the drivers’ performances. . This paper reports the evaluation of 6 novel design alternatives of In-Vehicle Information Systems (IVIS) aimed at mitigating driver aggression. Each application presented was designed to tackle the following contributing factors to driver aggression: competitiveness, anonymity, territoriality, stress as well as social and emotional isolation. The 6 applications were simulated using computer vision algorithm to automatically overlay the real traffic conditions with ‘Head-Up Display’ visualizations. Two applications emerged over the others from participant’s evaluation: shared music combined the known calming effect of music with the sense of sympathy and intimacy caused by hearing other drivers’ music. The Shared Snapshot application provided an immediate gratification and was evaluated as a potential prevention of roadside quarrels. The paper presents Theoretical foundation, participant’s evaluations, implications and limitations of the study.
Resumo:
Traffic crashes are the leading cause of death and injury among children aged between 4-14 years1,2 and premature graduation to adult seat belts2,3 and restraint misuse4 are common and known risk factors. Children are believed to prematurely graduate to adult belts and misuse the seat belt in booster seats if uncomfortable2,5,6. Although research has concentrated on educating parents and designing better restraints to reduce errors in use, comfort of the child in the restraint has not been studied. Currently there is no existing method for studying comfort in children in restraint systems, although self-report survey tools and pressure distribution mapping is commonly used to measure comfort among adult in vehicle seats. This poster presents preliminary results from work aimed at developing an appropriate method to measure comfort of children in vehicle restraint systems. The specific aims are to: 1. Examine the potential of using modified adult self-report/survey and pressure distribution mapping in children 2. Develop a video based, objective measure of comfort in children.