994 resultados para Implant surface


Relevância:

70.00% 70.00%

Publicador:

Resumo:

AimTo evaluate the influence (i) of various implant platform configurations and (ii) of implant surface characteristics on peri-implant tissue dimensions in a dog model.Material and methodsMandibular premolars and first molars were extracted bilaterally in six Labrador dogs. After 3 months of healing, two implants, one with a turned and a second with a moderately rough surface, were installed on each side of the mandible in the premolar region. on the right side of the mandible, implants with a tapered and enlarged platform were used, while standard cylindrical implants were installed in the left side of the mandible. Abutments with the diameter of the cylindrical implants were used resulting in a mismatch of 0.25 mm at the tapered implant sites. The flaps were sutured to allow a non-submerged healing. After 4 months, the animals were sacrificed and ground sections were obtained for histometric assessment.ResultsAll implants were completely osseointegrated. A minimal buccal bone resorption was observed for both implant configurations and surface topographies. Considering the animals as the statistical unit, no significant differences were found at the buccal aspect in relation to bone levels and soft tissue dimensions. The surface topographies did not influence the outcomes either.ConclusionsThe present study failed to show differences in peri-implant tissue dimensions when a mismatch of 0.25 mm from a tapered platform to an abutment was applied. The surface topographies influence a neither marginal bone resorption or peri-implant soft tissue dimension.To cite this article:Baffone GM, Botticelli D, Pantani F, Cardoso LC, Schweikert MT, Lang NP. Influence of various implant platform configurations on peri-implant tissue dimensions: an experimental study in dog.Clin. Oral Impl. Res. 22, 2011; 438-444.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this investigation was to evaluate the cleaning effect of CO 2 on surface topography and composition of failed dental implant surfaces. Ten failed dental implants were retrieved from nine patients (mean age, 46.33 ± 5.81 years) as a result of early or late failure. The implants were divided into two parts: one side of the implant was irradiated with a CO 2 laser (test side), while the other side did not receive irradiation (control side). The CO 2 laser was operated at 1.2 W in a continuous wave for 40 seconds (40 J energy). The handpiece of the CO 2 laser was kept at a distance of 30 mm from the implant surface, resulting in a spot area of 0.031415 cm 2 (38.20 W/cm 2; 1559 J/cm 2) in scanning mode (cervical-apical). One unused dental implant was used as a negative control for both groups. All implant surfaces were examined by scanning electron mi croscopy (SEM) and energy-dispersive spectrometer x-ray (EDS) for element analysis. SEM showed that the surface of the test sides consisted of different degrees of organic residues, appearing mainly as dark stains similar to those observed on the control sides. None of the test surfaces presented alterations such as crater-like alterations, lava-like layers, or melting compared with the nonirradiated surfaces. Foreign elements such as carbon, oxygen, sodium, calcium, and aluminum were detected on both sides. These results suggest that CO 2 laser irradiation does not modify the implant surface, although the cleaning effect was not satisfactory.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Recent clinical studies have described maxillary sinus floor augmentation by simply elevating the maxillary sinus membrane without the use of adjunctive grafting materials. Purpose: This experimental study aimed at comparing the histologic outcomes of sinus membrane elevation and simultaneous placement of implants with and without adjunctive autogenous bone grafts. The purpose was also to investigate the role played by the implant surface in osseointegration under such circumstances. Materials and Methods: Four tufted capuchin primates had all upper premolars and the first molar extracted bilaterally. Four months later, the animals underwent maxillary sinus membrane elevation surgery using a replaceable bone window technique. The schneiderian membrane was kept elevated by insertion of two implants (turned and oxidized, Brånemark System®, Nobel Biocare AB, Göteborg, Sweden) in both sinuses. The right sinus was left with no additional treatment, whereas the left sinus was filled with autogenous bone graft. Implant stability was assessed through resonance frequency analysis (Osstell™, Integration Diagnostics AB, Göteborg, Sweden) at installation and at sacrifice. The pattern of bone formation in the experimental sites and related to the different implant surfaces was investigated using fluorochromes. The animals were sacrificed 6 months after the maxillary sinus floor augmentation procedure for histology and histomorphometry (bone-implant contact, bone area in threads, and bone area in rectangle). Results: The results showed no differences between membrane-elevated and grafted sites regarding implant stability, bone-implant contacts, and bone area within and outside implant threads. The oxidized implants exhibited improved integration compared with turned ones as higher values of bone-implant contact and bone area within threads were observed. Conclusions: The amount of augmented bone tissue in the maxillary sinus after sinus membrane elevation with or without adjunctive autogenous bone grafts does not differ after 6 months of healing. New bone is frequently deposited in contact with the schneiderian membrane in coagulum-alone sites, indicating the osteoinductive potential of the membrane. Oxidized implants show a stronger bone tissue response than turned implants in sinus floor augmentation procedures. © 2006 Blackwell Publishing, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Previous studies have shown that membrane elevation results in predictable bone formation in the maxillary sinus provided that implants can be placed as tent poles. In situations with an extremely thin residual crest which impairs implant placement, it is possible that a space-making device can be used under the sinus membrane to promote bone formation prior to placement of implants. Purpose: The present study was conducted to test the hypothesis that the use of a space-making device for elevation of the sinus membrane will result in predictable bone formation at the maxillary sinus floor to allow placement of dental implants. Materials and Methods: Eight tufted capuchin primates underwent bilateral sinus membrane elevation surgery, and a bioresorbable space-making device, about 6 mm wide and 6 mm in height, was placed below the elevated membrane on the sinus floor. An oxidized implant (Nobel Biocare AB, Gothenburg, Sweden) was installed in the residual bone protruding into the created space at one side while the other side was left without an implant. Four animals were sacrificed after 6 months of healing. The remaining four animals received a second implant in the side with a space-making device only and followed for another 3 months before sacrifice. Implant stability was assessed through resonance frequency analysis (RFA) using the Osstell™ (Osstell AB, Gothenburg, Sweden) at installation, 6 months and 9 months after the first surgery. The bone-implant contact (BIC) and bone area inside the threads (BA) were histometrically evaluated in ground sections. Results: Histologically there were only minor or no signs of bone formation in the sites with a space-making device only. Sites with simultaneous implant placement showed bone formation along the implant surface. Sites with delayed implant placement showed minor or no bone formation and/or formation of a dense fibrous tissue along the apical part of the implant surface. In the latter group the apical part of the implant was not covered with the membrane but protruded into the sinus cavity. Conclusions: The use of a space-making device, with the design used in the present study, does not result in bone formation at the sinus floor. However, membrane elevation and simultaneous placement of the device and an implant does result in bone formation at the implant surface while sites with implants placed 6 months after membrane elevation show only small amounts of bone formation. It is suggested that lack of stabilization of the device and/or a too extensive elevation of the membrane may explain the results. © 2009, Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: Alterations in implant surfaces can affect periimplant bone formation and shorten the healing time. The goal of the present study was a comparative scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS) and biomechanical evaluation of implants subjected to different surface treatments. Materials and Methods: Four implant surfaces were analyzed in the present study: machined commercial implants (TU); porous-surfaced commercial implants blasted with Al2O3 microspheres and acid-etched (TJA); laser beam-irradiated experimental implants (Laser) and laser beam-irradiated experimental implants with hydroxyapatite coating (HA). One sample for each surface underwent pre-surgery SEM/EDS analysis. Thirty-two implants (8 for each surface treatment) were then inserted into the tibia of 4 rabbits. After 8 weeks, the animals were euthanized and the implants retrieved by reverse torque and processed for post-surgery SEM/EDS analysis. Results: HA implants presented higher removal torque values when compared to Laser, TJA and TU groups. Post-surgery SEM micrographs clearly showed bone formation on all the examined surfaces; however, in the TU group bone covered only some areas of the implant surface, while in TJA, Laser and HA groups the entire implant surfaces were overlaid by newly formed bone. EDS analysis supported the results obtained by SEM and removal torque, showing that concentration of Ca and P increased from TU to TJA, Laser and HA implants. Conclusions: Implants with surfaces modified by laser beam with or without apatite coating showed more promising results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To study the early sequential stages of osseointegration at implants installed in alveolar bony. Materials and methods: In 12 Labrador dogs, all mandibular premolars and first molars were extracted bilaterally. After 3 months of healing, full-thickness flaps were elevated in the edentulous region of the right side of the mandible. Implants were installed, and the flaps were sutured to allow a fully submerged healing. The timing of the installations in the left side of the mandible and of sacrifices were performed with a schedule that various observation periods to sacrifice from 5, 10, 20, and 30 days were available so that n = 6 was obtained per each healing period. Ground sections were prepared and analyzed. Results: Newly formed bone in contact with the implant surface was found after 10 days of healing and the percentage increased up to 50% after 1 month of healing. A higher percentage was found in the trabecular compared with the cortical bony compartment. Old bone decreased by about 50% during healing, being still present after 1 month (16%). The proportions of bone debris and bone particles were at 27% after 5 days and decreased during healing to 6% after 1 month. Conclusion: Osseointegration (new bone-to-implant contact) developed at various rates for cortical and trabecular compartments, respectively. In the trabecular region, mesenchymal cells were identified, subsequently developing into new bone in contact with the implant surface. In the cortical compartment, however, resorptive processes were observed throughout all periods of healing. The proportion of newly formed bone percentage was lower compared with that of the trabecular area. Old bone was still present after 1 month of healing in both compartments. Bone debris and small bone particles appeared to be involved in initial bone formation. © 2013 John Wiley & Sons A/S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study evaluated 3 implant surfaces in a dog model: (1) resorbable-blasting media + acid-etched (RBMa), alumina-blasting + acid-etching (AB/AE), and AB/AE + RBMa (hybrid). All of the surfaces were minimally rough, and Ca and P were present for the RBMa and hybrid surfaces. Following 2 weeks in vivo, no significant differences were observed for torque, bone-to-implant contact, and bone-area fraction occupied measurements. Newly formed woven bone was observed in proximity with all surfaces.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIM: The aim of this study was to evaluate, through a systematic review of the literature, the effects of different implant surface modifications on osseointegration in diabetic subjects. METHODS: A search was performed of the PubMed database, using a combination of the following keywords: “Implant surface” OR “Dental implants” AND “Diabetes” OR “Hyperglycemia”. Papers published in English between January 1960 and November 2013 were selected. All experimental models were considered in this search, but case reports and in vitro studies were excluded from this review. RESULTS: The initial search identified 182 articles. After reading the titles and abstracts, 39 articles were selected for full reading. Finally, 4 papers were selected after evaluation of all the papers, and these papers are discussed in this review. Due to the methodological heterogeneity of the selected studies, it was not possible to perform a meta-analysis of the data. CONCLUSION: It can be concluded that although the benefits of surface modifications present in individuals with diabetes have biological plausibility, there is little evidence of the benefits of these modifications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The surface of dental implants is an important factor for osseointegration process and different methods of surface treatment have been described. Objective: To investigate the bone apposition in implant surface treated with sandblasting and acid-etching. Material and methods: Ten rabbits were selected and received one implant treated with method I in the left tibia and one implant treated with method II in the right tibia. Then, twenty implants were divided in two groups, according to methods of sandblasting and acid-etching (method I and method II). After 7, 14, 30, 45 and 60 days, tibias were retrieved and submitted to histotechnical procedures. The percentages of bone–implant contact (BIC) and bone area between threads (BABT) were determined throughout histomorphometric analysis and bone apposition was detected in implants of both groups. Results: In BABT measurements, an increase was observed after 45 and 60 days in the method II, compared to method I and no differences were found after 7, 14 and 30 days. In BIC measurements, an increase was detected with method II at 45 days when compared to method I. No differences between groups in BIC values were observed after 7, 14, 30 and 60 days. Conclusion: Our data demonstrated that implants treated with the method II presented increase in the contact between bone and implant after 45 days compared to method I. Moreover, with concern to bone area between threads, it was observed an increased in the method II after 45 and 60 days. However, both groups can be successfully used as a therapeutic strategy to rehabilitation of edentulous patients. Then, further experiments are needed to evaluate, in depth, the putative differential role of each surface treatment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Processo FAPESP: 2012/24545-3

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent studies in animals have shown pronounced resorption of the buccal bone plate after immediate implantation. The use of flapless surgical procedures prior to the installation of immediate implants, as well as the use of synthetic bone graft in the gaps represent viable alternatives to minimize buccal bone resorption and to favor osseointegration. The aim of this study was to evaluate the healing of the buccal bone plate following immediate implantation using the flapless approach, and to compare this process with sites in which a synthetic bone graft was or was not inserted into the gap between the implant and the buccal bone plate. Lower bicuspids from 8 dogs were bilaterally extracted without the use of flaps, and 4 implants were installed in the alveoli in each side of the mandible and were positioned 2.0 mm from the buccal bone plate (gap). Four groups were devised: 2.0-mm subcrestal implants (3.3 x 8 mm) using bone grafts (SCTG), 2.0-mm subcrestal implants without bone grafts (SCCG), equicrestal implants (3.3 x 10 mm) with bone grafts (EGG), and equicrestal implants without bone grafts (ECCG). One week following the surgical procedures, metallic prostheses were installed, and within 12 weeks the dogs were sacrificed. The blocks containing the individual implants were turned sideways, and radiographic imaging was obtained to analyze the remodeling of the buccal bone plate. In the analysis of the resulting distance between the implant shoulder and the bone crest, statistically significant differences were found in the SCTG when compared to the ECTG (P = .02) and ECCG (P = .03). For mean value comparison of the resulting linear distance between the implant surface and the buccal plate, no statistically significant difference was found among all groups (P > .05). The same result was observed in the parameter for presence or absence of tissue formation between the implant surface and buccal plate. Equicrestally placed implants, in this methodology, presented little or no loss of the buccal bone. The subcrestally positioned implants presented loss of buccal bone, even though synthetic bone graft was used. The buccal bone, however, was always coronal to the implant shoulder.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: To investigate the effect of Si addition on a nanometer-scale roughness Ca and P implant surfaces in a canine tibia model by biomechanical and histomorphometric evaluations. Material and methods: The implant surfaces comprised a resorbable media CaP microblasted (control) and a CaP resorbable media + silica-boost microblasted (experimental) surfaces. Surfaces were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and optical interferometry (IFM) down to the nanometric level. The animal model involved the bilateral placement of control (n = 24) and experimental surface (n = 24) implants along the proximal tibiae of six dogs, remaining in vivo for 2 or 4 weeks. After euthanization, half of the specimens were torquedto- interface failure, and the other half was subjected to histomorphologic and bone-to-implant contact (BIC) evaluation. Torque and BIC statistical evaluation was performed by the Friedman test at 95% level of significance, and comparisons between groups was performed by the Dunn test. Results: IFM and SEM observations depicted comparable roughness parameters for both implant surfaces on the micrometer and nanometer scales. XPS analysis revealed similar chemical composition, except for the addition of Si on the experimental group. Torque-to-interface failure and BIC mean values showed no significant differences (P = 0.25 and 0.51, respectively) at both 2- and 4-week evaluation points for experimental and control groups. Early bone healing histomorphologic events were similar between groups. Conclusions: The experimental surface resulted in not significantly different biomechanical fixation and BIC relative to control. Both surfaces were biocompatible and osseoconductive.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Objectives: To investigate the influence of protein incorporation on the resistance of biomimetic calcium-phosphate coatings to the shear forces that are generated during implant insertion. Materials and Methods: Thirty-eight standard (5 x 13 mm) Osseotite((R)) implants were coated biomimetically with a layer of calcium phosphate, which either lacked or bore a co-precipitated (incorporated) depot of the model protein bovine serum albumin (BSA). The coated implants were inserted into either artificial bone (n=18) or the explanted mandibles of adult pigs (n=12). The former set-up was established for the measurement of torque and of coating losses during the insertion process. The latter set-up was established for the histological and histomorphometric analysis of the fate of the coatings after implantation. Results: BSA-bearing coatings had higher mean torque values than did those that bore no protein depot. During the insertion process, less material was lost from the former than from the latter type of coating. The histological and histomorphometric analysis revealed fragments of material to be sheared off from both types of coating at vulnerable points, namely, at the tips of the threads. The sheared-off fragments were retained within the peri-implant space. Conclusion: The incorporation of a protein into a biomimetically prepared calcium-phosphate coating increases its resistance to the shear forces that are generated during implant insertion. In a clinical setting, the incorporated protein would be an osteogenic agent, whose osteoinductive potential would not be compromised by the shearing off of coating material, and the osteoconductivity of an exposed implant surface would not be less than that of a coated one. To cite this article: Hägi TT, Enggist L, Michel D, Ferguson SJ, Liu Y, Hunziker EB. Mechanical insertion properties of calcium-phosphate implant coatings. Clin. Oral Impl. Res. xx, 2010; 000-000. doi: 10.1111/j.1600-0501.2010.01916.x.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microrough titanium (Ti) surfaces of dental implants have demonstrated more rapid and greater bone apposition when compared with machined Ti surfaces. However, further enhancement of osteoblastic activity and bone apposition by bio-functionalizing the implant surface with a monomolecular adsorbed layer of a co-polymer - i.e., poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its derivatives (PLL-g-PEG/PEG-peptide) - has never been investigated. The aim of the present study was to examine early bone apposition to a modified sandblasted and acid-etched (SLA) surface coated with an Arg-Gly-Asp (RGD)-peptide-modified polymer (PLL-g-PEG/PEG-RGD) in the maxillae of miniature pigs, and to compare it with the standard SLA surface. Test and control implants had the same microrough topography (SLA), but differed in their surface chemistry (polymer coatings). The following surfaces were examined histomorphometrically: (i) control - SLA without coating; (ii) (PLL-g-PEG); (iii) (PLL-g-PEG/PEG-RDG) (RDG, Arg-Asp-Gly); and (iv) (PLL-g-PEG/PEG-RGD). At 2 weeks, RGD-coated implants demonstrated significantly higher percentages of bone-to-implant contact as compared with controls (61.68% vs. 43.62%; P < 0.001). It can be concluded that the (PLL-g-PEG/PEG-RGD) coatings may promote enhanced bone apposition during the early stages of bone regeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Osteogenic agents, such as bone morphogenetic protein-2 (BMP-2), can stimulate the degradation as well as the formation of bone. Hence, they could impair the osteoconductivity of functionalized implant surfaces. We assessed the effects of BMP-2 and its mode of delivery on the osteoconductivity of dental implants with either a naked titanium surface or a calcium-phosphate-coated one. The naked titanium surface bore adsorbed BMP-2, whilst the coated one bore incorporated, adsorbed, or incorporated and adsorbed BMP-2. The implants were inserted into the maxillae of adult miniature pigs. The volume of bone deposited within a defined "osteoconductive" (peri-implant) space, and bone coverage of the implant surface delimiting this space, were estimated morphometrically 1-3 weeks later. After 3 weeks, the volume of bone deposited within the osteoconductive space was highest for coated and uncoated implants bearing no BMP-2, followed by coated implants bearing incorporated BMP-2; it was lowest for coated implants bearing only adsorbed BMP-2. Bone-interface coverage was highest for coated implants bearing no BMP-2, followed by coated implants bearing either incorporated, or incorporated and adsorbed BMP-2; it was lowest for uncoated implants bearing adsorbed BMP-2. Hence, the osteoconductivity of implant surfaces can be significantly modulated by BMP-2 and its mode of delivery.