980 resultados para Identification algorithms
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Algorithmic resources are considered for elaboration and identification of monotone functions and some alternate structures are brought, which are more explicit in sense of structure and quantities and which can serve as elements of practical identification algorithms. General monotone recognition is considered on multi- dimensional grid structure. Particular reconstructing problem is reduced to the monotone recognition through the multi-dimensional grid partitioning into the set of binary cubes.
Resumo:
The inherent stochastic character of most of the physical quantities involved in engineering models has led to an always increasing interest for probabilistic analysis. Many approaches to stochastic analysis have been proposed. However, it is widely acknowledged that the only universal method available to solve accurately any kind of stochastic mechanics problem is Monte Carlo Simulation. One of the key parts in the implementation of this technique is the accurate and efficient generation of samples of the random processes and fields involved in the problem at hand. In the present thesis an original method for the simulation of homogeneous, multi-dimensional, multi-variate, non-Gaussian random fields is proposed. The algorithm has proved to be very accurate in matching both the target spectrum and the marginal probability. The computational efficiency and robustness are very good too, even when dealing with strongly non-Gaussian distributions. What is more, the resulting samples posses all the relevant, welldefined and desired properties of “translation fields”, including crossing rates and distributions of extremes. The topic of the second part of the thesis lies in the field of non-destructive parametric structural identification. Its objective is to evaluate the mechanical characteristics of constituent bars in existing truss structures, using static loads and strain measurements. In the cases of missing data and of damages that interest only a small portion of the bar, Genetic Algorithm have proved to be an effective tool to solve the problem.
Resumo:
Fermentation processes as objects of modelling and high-quality control are characterized with interdependence and time-varying of process variables that lead to non-linear models with a very complex structure. This is why the conventional optimization methods cannot lead to a satisfied solution. As an alternative, genetic algorithms, like the stochastic global optimization method, can be applied to overcome these limitations. The application of genetic algorithms is a precondition for robustness and reaching of a global minimum that makes them eligible and more workable for parameter identification of fermentation models. Different types of genetic algorithms, namely simple, modified and multi-population ones, have been applied and compared for estimation of nonlinear dynamic model parameters of fed-batch cultivation of S. cerevisiae.
Resumo:
Anaerobic digestion (AD) of wastewater is a very interesting option for waste valorization, energy production and environment protection. It is a complex, naturally occurring process that can take place inside bioreactors. The capability of predicting the operation of such bioreactors is important to optimize the design and the operation conditions of the reactors, which, in part, justifies the numerous AD models presently available. The existing AD models are not universal, have to be inferred from prior knowledge and rely on existing experimental data. Among the tasks involved in the process of developing a dynamical model for AD, the estimation of parameters is one of the most challenging. This paper presents the identifiability analysis of a nonlinear dynamical model for a batch reactor. Particular attention is given to the structural identifiability of the model, which considers the uniqueness of the estimated parameters. To perform this analysis, the GenSSI toolbox was used. The estimation of the model parameters is achieved with genetic algorithms (GA) which have already been used in the context of AD modelling, although not commonly. The paper discusses its advantages and disadvantages.
Resumo:
Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.
Resumo:
Nowadays, reducing energy consumption is one of the highest priorities and biggest challenges faced worldwide and in particular in the industrial sector. Given the increasing trend of consumption and the current economical crisis, identifying cost reductions on the most energy-intensive sectors has become one of the main concerns among companies and researchers. Particularly in industrial environments, energy consumption is affected by several factors, namely production factors(e.g. equipments), human (e.g. operators experience), environmental (e.g. temperature), among others, which influence the way of how energy is used across the plant. Therefore, several approaches for identifying consumption causes have been suggested and discussed. However, the existing methods only provide guidelines for energy consumption and have shown difficulties in explaining certain energy consumption patterns due to the lack of structure to incorporate context influence, hence are not able to track down the causes of consumption to a process level, where optimization measures can actually take place. This dissertation proposes a new approach to tackle this issue, by on-line estimation of context-based energy consumption models, which are able to map operating context to consumption patterns. Context identification is performed by regression tree algorithms. Energy consumption estimation is achieved by means of a multi-model architecture using multiple RLS algorithms, locally estimated for each operating context. Lastly, the proposed approach is applied to a real cement plant grinding circuit. Experimental results prove the viability of the overall system, regarding both automatic context identification and energy consumption estimation.
Resumo:
This paper describes the trigger and offline reconstruction, identification and energy calibration algorithms for hadronic decays of tau leptons employed for the data collected from pp collisions in 2012 with the ATLAS detector at the LHC center-of-mass energy s√ = 8 TeV. The performance of these algorithms is measured in most cases with Z decays to tau leptons using the full 2012 dataset, corresponding to an integrated luminosity of 20.3 fb−1. An uncertainty on the offline reconstructed tau energy scale of 2% to 4%, depending on transverse energy and pseudorapidity, is achieved using two independent methods. The offline tau identification efficiency is measured with a precision of 2.5% for hadronically decaying tau leptons with one associated track, and of 4% for the case of three associated tracks, inclusive in pseudorapidity and for a visible transverse energy greater than 20 GeV. For hadronic tau lepton decays selected by offline algorithms, the tau trigger identification efficiency is measured with a precision of 2% to 8%, depending on the transverse energy. The performance of the tau algorithms, both offline and at the trigger level, is found to be stable with respect to the number of concurrent proton--proton interactions and has supported a variety of physics results using hadronically decaying tau leptons at ATLAS.
Resumo:
Context: Understanding the process through which adolescents and young adults are trying legal and illegal substances is a crucial point for the development of tailored prevention and treatment programs. However, patterns of substance first use can be very complex when multiple substances are considered, requiring reduction into a few meaningful number of categories. Data: We used data from a survey on adolescent and young adult health conducted in 2002 in Switzerland. Answers from 2212 subjects aged 19 and 20 were included. The first consumption ever of 10 substances (tobacco, cannabis, medicine to get high, sniff (volatile substances, and inhalants), ecstasy, GHB, LSD, cocaine, methadone, and heroin) was considered for a grand total of 516 different patterns. Methods: In a first step, automatic clustering was used to decrease the number of patterns to 50. Then, two groups of substance use experts, three social field workers, and three toxicologists and health professionals, were asked to reduce them into a maximum of 10 meaningful categories. Results: Classifications obtained through our methodology are of practical interest by revealing associations invisible to purely automatic algorithms. The article includes a detailed analysis of both final classifications, and a discussion on the advantages and limitations of our approach.
Resumo:
Abstract : In the subject of fingerprints, the rise of computers tools made it possible to create powerful automated search algorithms. These algorithms allow, inter alia, to compare a fingermark to a fingerprint database and therefore to establish a link between the mark and a known source. With the growth of the capacities of these systems and of data storage, as well as increasing collaboration between police services on the international level, the size of these databases increases. The current challenge for the field of fingerprint identification consists of the growth of these databases, which makes it possible to find impressions that are very similar but coming from distinct fingers. However and simultaneously, this data and these systems allow a description of the variability between different impressions from a same finger and between impressions from different fingers. This statistical description of the withinand between-finger variabilities computed on the basis of minutiae and their relative positions can then be utilized in a statistical approach to interpretation. The computation of a likelihood ratio, employing simultaneously the comparison between the mark and the print of the case, the within-variability of the suspects' finger and the between-variability of the mark with respect to a database, can then be based on representative data. Thus, these data allow an evaluation which may be more detailed than that obtained by the application of rules established long before the advent of these large databases or by the specialists experience. The goal of the present thesis is to evaluate likelihood ratios, computed based on the scores of an automated fingerprint identification system when the source of the tested and compared marks is known. These ratios must support the hypothesis which it is known to be true. Moreover, they should support this hypothesis more and more strongly with the addition of information in the form of additional minutiae. For the modeling of within- and between-variability, the necessary data were defined, and acquired for one finger of a first donor, and two fingers of a second donor. The database used for between-variability includes approximately 600000 inked prints. The minimal number of observations necessary for a robust estimation was determined for the two distributions used. Factors which influence these distributions were also analyzed: the number of minutiae included in the configuration and the configuration as such for both distributions, as well as the finger number and the general pattern for between-variability, and the orientation of the minutiae for within-variability. In the present study, the only factor for which no influence has been shown is the orientation of minutiae The results show that the likelihood ratios resulting from the use of the scores of an AFIS can be used for evaluation. Relatively low rates of likelihood ratios supporting the hypothesis known to be false have been obtained. The maximum rate of likelihood ratios supporting the hypothesis that the two impressions were left by the same finger when the impressions came from different fingers obtained is of 5.2 %, for a configuration of 6 minutiae. When a 7th then an 8th minutia are added, this rate lowers to 3.2 %, then to 0.8 %. In parallel, for these same configurations, the likelihood ratios obtained are on average of the order of 100,1000, and 10000 for 6,7 and 8 minutiae when the two impressions come from the same finger. These likelihood ratios can therefore be an important aid for decision making. Both positive evolutions linked to the addition of minutiae (a drop in the rates of likelihood ratios which can lead to an erroneous decision and an increase in the value of the likelihood ratio) were observed in a systematic way within the framework of the study. Approximations based on 3 scores for within-variability and on 10 scores for between-variability were found, and showed satisfactory results. Résumé : Dans le domaine des empreintes digitales, l'essor des outils informatisés a permis de créer de puissants algorithmes de recherche automatique. Ces algorithmes permettent, entre autres, de comparer une trace à une banque de données d'empreintes digitales de source connue. Ainsi, le lien entre la trace et l'une de ces sources peut être établi. Avec la croissance des capacités de ces systèmes, des potentiels de stockage de données, ainsi qu'avec une collaboration accrue au niveau international entre les services de police, la taille des banques de données augmente. Le défi actuel pour le domaine de l'identification par empreintes digitales consiste en la croissance de ces banques de données, qui peut permettre de trouver des impressions très similaires mais provenant de doigts distincts. Toutefois et simultanément, ces données et ces systèmes permettent une description des variabilités entre différentes appositions d'un même doigt, et entre les appositions de différents doigts, basées sur des larges quantités de données. Cette description statistique de l'intra- et de l'intervariabilité calculée à partir des minuties et de leurs positions relatives va s'insérer dans une approche d'interprétation probabiliste. Le calcul d'un rapport de vraisemblance, qui fait intervenir simultanément la comparaison entre la trace et l'empreinte du cas, ainsi que l'intravariabilité du doigt du suspect et l'intervariabilité de la trace par rapport à une banque de données, peut alors se baser sur des jeux de données représentatifs. Ainsi, ces données permettent d'aboutir à une évaluation beaucoup plus fine que celle obtenue par l'application de règles établies bien avant l'avènement de ces grandes banques ou par la seule expérience du spécialiste. L'objectif de la présente thèse est d'évaluer des rapports de vraisemblance calcul és à partir des scores d'un système automatique lorsqu'on connaît la source des traces testées et comparées. Ces rapports doivent soutenir l'hypothèse dont il est connu qu'elle est vraie. De plus, ils devraient soutenir de plus en plus fortement cette hypothèse avec l'ajout d'information sous la forme de minuties additionnelles. Pour la modélisation de l'intra- et l'intervariabilité, les données nécessaires ont été définies, et acquises pour un doigt d'un premier donneur, et deux doigts d'un second donneur. La banque de données utilisée pour l'intervariabilité inclut environ 600000 empreintes encrées. Le nombre minimal d'observations nécessaire pour une estimation robuste a été déterminé pour les deux distributions utilisées. Des facteurs qui influencent ces distributions ont, par la suite, été analysés: le nombre de minuties inclus dans la configuration et la configuration en tant que telle pour les deux distributions, ainsi que le numéro du doigt et le dessin général pour l'intervariabilité, et la orientation des minuties pour l'intravariabilité. Parmi tous ces facteurs, l'orientation des minuties est le seul dont une influence n'a pas été démontrée dans la présente étude. Les résultats montrent que les rapports de vraisemblance issus de l'utilisation des scores de l'AFIS peuvent être utilisés à des fins évaluatifs. Des taux de rapports de vraisemblance relativement bas soutiennent l'hypothèse que l'on sait fausse. Le taux maximal de rapports de vraisemblance soutenant l'hypothèse que les deux impressions aient été laissées par le même doigt alors qu'en réalité les impressions viennent de doigts différents obtenu est de 5.2%, pour une configuration de 6 minuties. Lorsqu'une 7ème puis une 8ème minutie sont ajoutées, ce taux baisse d'abord à 3.2%, puis à 0.8%. Parallèlement, pour ces mêmes configurations, les rapports de vraisemblance sont en moyenne de l'ordre de 100, 1000, et 10000 pour 6, 7 et 8 minuties lorsque les deux impressions proviennent du même doigt. Ces rapports de vraisemblance peuvent donc apporter un soutien important à la prise de décision. Les deux évolutions positives liées à l'ajout de minuties (baisse des taux qui peuvent amener à une décision erronée et augmentation de la valeur du rapport de vraisemblance) ont été observées de façon systématique dans le cadre de l'étude. Des approximations basées sur 3 scores pour l'intravariabilité et sur 10 scores pour l'intervariabilité ont été trouvées, et ont montré des résultats satisfaisants.
Resumo:
Epoetin-delta (Dynepo Shire Pharmaceuticals, Basing stoke, UK) is a synthetic form of erythropoietin (EPO) whose resemblance with endogenous EPO makes it hard to identify using the classical identification criteria. Urine samples collected from six healthy volunteers treated with epoetin-delta injections and from a control population were immuno-purified and analyzed with the usual IEF method. On the basis of the EPO profiles integration, a linear multivariate model was computed for discriminant analysis. For each sample, a pattern classification algorithm returned a bands distribution and intensity score (bands intensity score) saying how representative this sample is of one of the two classes, positive or negative. Effort profiles were also integrated in the model. The method yielded a good sensitivity versus specificity relation and was used to determine the detection window of the molecule following multiple injections. The bands intensity score, which can be generalized to epoetin-alpha and epoetin-beta, is proposed as an alternative criterion and a supplementary evidence for the identification of EPO abuse.
Identification and Semiactive Control of Smart Structures Equipped with Magnetorheological Actuators
Resumo:
This paper deals with the problem of identification and semiactive control of smart structures subject to unknown external disturbances such as earthquake, wind, etc. The experimental setup used is a 6-story test structure equipped with shear-mode semiactive magnetorheological actuators being installed in WUSCEEL. The experimental results obtained have verified the effectiveness of the proposed control algorithms
Resumo:
Summary Cancer is a leading cause of morbidity and mortality in Western countries (as an example, colorectal cancer accounts for about 300'000 new cases and 200'000 deaths each year in Europe and in the USA). Despite that many patients with cancer have complete macroscopic clearance of their disease after resection, radiotherapy and/or chemotherapy, many of these patients develop fatal recurrence. Vaccination with immunogenic peptide tumor antigens has shown encouraging progresses in the last decade; immunotherapy might therefore constitute a fourth therapeutic option in the future. We dissect here and critically evaluate the numerous steps of reverse immunology, a forecast procedure to identify antigenic peptides from the sequence of a gene of interest. Bioinformatic algorithms were applied to mine sequence databases for tumor-specific transcripts. A quality assessment of publicly available sequence databanks allowed defining strengths and weaknesses of bioinformatics-based prediction of colon cancer-specific alternative splicing: new splice variants could be identified, however cancer-restricted expression could not be significantly predicted. Other sources of target transcripts were quantitatively investigated by polymerase chain reactions, as cancer-testis genes or reported overexpressed transcripts. Based on the relative expression of a defined set of housekeeping genes in colon cancer tissues, we characterized a precise procedure for accurate normalization and determined a threshold for the definition of significant overexpression of genes in cancers versus normal tissues. Further steps of reverse immunology were applied on a splice variant of the Melan¬A gene. Since it is known that the C-termini of antigenic peptides are directly produced by the proteasome, longer precursor and overlapping peptides encoded by the target sequence were synthesized chemically and digested in vitro with purified proteasome. The resulting fragments were identified by mass spectroscopy to detect cleavage sites. Using this information and based on the available anchor motifs for defined HLA class I molecules, putative antigenic peptides could be predicted. Their relative affinity for HLA molecules was confirmed experimentally with functional competitive binding assays and they were used to search patients' peripheral blood lymphocytes for the presence of specific cytolytic T lymphocytes (CTL). CTL clones specific for a splice variant of Melan-A could be isolated; although they recognized peptide-pulsed cells, they failed to lyse melanoma cells in functional assays of antigen recognition. In the conclusion, we discuss advantages and bottlenecks of reverse immunology and compare the technical aspects of this approach with the more classical procedure of direct immunology, a technique introduced by Boon and colleagues more than 10 years ago to successfully clone tumor antigens.
Resumo:
One of the challenges of tumour immunology remains the identification of strongly immunogenic tumour antigens for vaccination. Reverse immunology, that is, the procedure to predict and identify immunogenic peptides from the sequence of a gene product of interest, has been postulated to be a particularly efficient, high-throughput approach for tumour antigen discovery. Over one decade after this concept was born, we discuss the reverse immunology approach in terms of costs and efficacy: data mining with bioinformatic algorithms, molecular methods to identify tumour-specific transcripts, prediction and determination of proteasomal cleavage sites, peptide-binding prediction to HLA molecules and experimental validation, assessment of the in vitro and in vivo immunogenic potential of selected peptide antigens, isolation of specific cytolytic T lymphocyte clones and final validation in functional assays of tumour cell recognition. We conclude that the overall low sensitivity and yield of every prediction step often requires a compensatory up-scaling of the initial number of candidate sequences to be screened, rendering reverse immunology an unexpectedly complex approach.
Resumo:
We present a new technique for audio signal comparison based on tonal subsequence alignment and its application to detect cover versions (i.e., different performances of the same underlying musical piece). Cover song identification is a task whose popularity has increased in the Music Information Retrieval (MIR) community along in the past, as it provides a direct and objective way to evaluate music similarity algorithms.This article first presents a series of experiments carried outwith two state-of-the-art methods for cover song identification.We have studied several components of these (such as chroma resolution and similarity, transposition, beat tracking or Dynamic Time Warping constraints), in order to discover which characteristics would be desirable for a competitive cover song identifier. After analyzing many cross-validated results, the importance of these characteristics is discussed, and the best-performing ones are finally applied to the newly proposed method. Multipleevaluations of this one confirm a large increase in identificationaccuracy when comparing it with alternative state-of-the-artapproaches.