998 resultados para Icing (Meteorology)
Resumo:
Global Positioning System (GPS), with its high integrity, continuous availability and reliability, revolutionized the navigation system based on radio ranging. With four or more GPS satellites in view, a GPS receiver can find its location anywhere over the globe with accuracy of few meters. High accuracy - within centimeters, or even millimeters is achievable by correcting the GPS signal with external augmentation system. The use of satellite for critical application like navigation has become a reality through the development of these augmentation systems (like W AAS, SDCM, and EGNOS, etc.) with a primary objective of providing essential integrity information needed for navigation service in their respective regions. Apart from these, many countries have initiated developing space-based regional augmentation systems like GAGAN and IRNSS of India, MSAS and QZSS of Japan, COMPASS of China, etc. In future, these regional systems will operate simultaneously and emerge as a Global Navigation Satellite System or GNSS to support a broad range of activities in the global navigation sector.Among different types of error sources in the GPS precise positioning, the propagation delay due to the atmospheric refraction is a limiting factor on the achievable accuracy using this system. The WADGPS, aimed for accurate positioning over a large area though broadcasts different errors involved in GPS ranging including ionosphere and troposphere errors, due to the large temporal and spatial variations in different atmospheric parameters especially in lower atmosphere (troposphere), the use of these broadcasted tropospheric corrections are not sufficiently accurate. This necessitated the estimation of tropospheric error based on realistic values of tropospheric refractivity. Presently available methodologies for the estimation of tropospheric delay are mostly based on the atmospheric data and GPS measurements from the mid-latitude regions, where the atmospheric conditions are significantly different from that over the tropics. No such attempts were made over the tropics. In a practical approach when the measured atmospheric parameters are not available analytical models evolved using data from mid-latitudes for this purpose alone can be used. The major drawback of these existing models is that it neglects the seasonal variation of the atmospheric parameters at stations near the equator. At tropics the model underestimates the delay in quite a few occasions. In this context, the present study is afirst and major step towards the development of models for tropospheric delay over the Indian region which is a prime requisite for future space based navigation program (GAGAN and IRNSS). Apart from the models based on the measured surface parameters, a region specific model which does not require any measured atmospheric parameter as input, but depends on latitude and day of the year was developed for the tropical region with emphasis on Indian sector.Large variability of atmospheric water vapor content in short spatial and/or temporal scales makes its measurement rather involved and expensive. A local network of GPS receivers is an effective tool for water vapor remote sensing over the land. This recently developed technique proves to be an effective tool for measuring PW. The potential of using GPS to estimate water vapor in the atmosphere at all-weather condition and with high temporal resolution is attempted. This will be useful for retrieving columnar water vapor from ground based GPS data. A good network of GPS could be a major source of water vapor information for Numerical Weather Prediction models and could act as surrogate to the data gap in microwave remote sensing for water vapor over land.
Resumo:
The main aim of the study is to give a clear picture of various meteorological factors affecting the dispersal of pollutants. One such important developing metropolis, namely Madras, is chosen for the present study. The study throws light into the occurrence of inversions, isothermals and lapse conditions and the vertical and horizontal extent of mixing of pollutants. The thesis also aims to study the wind climatology and atmospheric stability .The study gives a insight to the spatial distribution of sulphudioxide concentration using the Gaussian plume model, which accounts for various industrial sources. The researcher suggests optimum locations for industries and various steps to reduce air pollution.
Resumo:
Man's inadvertent interference with the environment by way of indiscreL¢ industrflflization has led to the deteriorating air quality in the recent times. The search is on to find the remedies to confine the air pollution levels with in their thershold limits. Theoretical studies play A crucial role in the control and for abatment of air pollution. Improper siting of industry is one of the most common reasons for the increased levels of air pollution in urban environments. A proper and effective ecological planning is an essential first step for any region in order to reduce the effects of air pollution. By means of theoretical models one can obtain the pollutant distribution in any urban area, provided the necessary data are available with the help of which the sites for new industries could be suggested, given the emission inventory. Studies on air pollution meteorology serve and aid the planners to initate remedial actions to bring down the levels of pollution and also to out—line the control strategy. In the present thesis some theoretical studies on air pollution meteorology over South India are made. The thesis is divided into six chapters
Resumo:
Effect of delayed icing on the microbial quality and shelf-life of Hilsa toll was studied . Fish iced in rigor condition had a shelf-life of 11 days irrespective of the state of rigor . Fish procured from the landing centre had a shelf-life of only 8 days . It showed the presence of coagulase positive staphylococci, faecal streptococci and E. coli. Total bacterial count was low in all the samples and it increased after spoilage
Resumo:
A look at the prevalence of idiom usage in the mainstream classroom, and the students' who are deaf/hard of hearing acquisition of idiom comprehension and usage. A complete teacher’s guide, including lesson plans and materials, and a list of idiom teaching resources for teachers of the deaf and mainstream teachers.
Resumo:
This paper reviews the meteorology of the Western Indian Ocean and uses a state–of–the–art atmospheric general circulation model to investigate the influence of the East African Highlands on the climate of the Indian Ocean and its surrounding regions. The new 44–year re–analysis produced by the European Centre for Medium range Weather Forecasts (ECMWF) has been used to construct a new climatology of the Western Indian Ocean. A brief overview of the seasonal cycle of the Western Indian Ocean is presented which emphasizes the importance of the geography of the Indian Ocean basin for controlling the meteorology of the Western Indian Ocean. The principal modes of inter–annual variability are described, associated with El Niño and the Indian Ocean Dipole or Zonal Mode, and the basic characteristics of the subseasonal weather over the Western Indian Ocean are presented, including new statistics on cyclone tracks derived from the ECMWF re–analyses. Sensitivity experiments, in which the orographic effects of East Africa are removed, have shown that the East African Highlands, although not very high, play a significant role in the climate of Africa, India and Southeast Asia, and in the heat, salinity and momentum forcing of the Western Indian Ocean. The hydrological cycle over Africa is systematically enhanced in all seasons by the presence of the East African Highlands, and during the Asian summer monsoon there is a major redistribution of the rainfall across India and Southeast Asia. The implied impact of the East African Highlands on the ocean is substantial. The East African Highlands systematically freshen the tropical Indian Ocean, and act to focus the monsoon winds along the coast, leading to greater upwelling and cooler sea–surface temperatures.