978 resultados para IRRADIANCE PREDICTIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We test competing linear and curvilinear predictions between board diversity and performance. The predictions were tested using archival data on 288 organizations listed on the Australian Securities Exchange. The findings provide additional evidence on the business case for board gender diversity and refine the business case for board age diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inconsistent findings of past board diversity research demand a test of competing linear and curvilinear diversity–performance predictions. This research focuses on board age and gender diversity, and presents a positive linear prediction based on resource dependence theory, a negative linear prediction based on social identity theory, and an inverted U-shaped curvilinear prediction based on the integration of resource dependence theory with social identity theory. The predictions were tested using archival data on 288 large organizations listed on the Australian Securities Exchange, with a 1-year time lag between diversity (age and gender) and performance (employee productivity and return on assets). The results indicate a positive linear relationship between gender diversity and employee productivity, a negative linear relationship between age diversity and return on assets, and an inverted U-shaped curvilinear relationship between age diversity and return on assets. The findings provide additional evidence on the business case for board gender diversity and refine the business case for board age diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irradiance profile around the receiver tube (RT) of a parabolic trough collector (PTC) is a key effect of optical performance that affects the overall energy performance of the collector. Thermal performance evaluation of the RT relies on the appropriate determination of the irradiance profile. This article explains a technique in which empirical equations were developed to calculate the local irradiance as a function of angular location of the RT of a standard PTC using a vigorously verified Monte Carlo ray tracing model. A large range of test conditions including daily normal insolation, spectral selective coatings and glass envelop conditions were selected from the published data by Dudley et al. [1] for the job. The R2 values of the equations are excellent that vary in between 0.9857 and 0.9999. Therefore, these equations can be used confidently to produce realistic non-uniform boundary heat flux profile around the RT at normal incidence for conjugate heat transfer analyses of the collector. Required values in the equations are daily normal insolation, and the spectral selective properties of the collector components. Since the equations are polynomial functions, data processing software can be employed to calculate the flux profile very easily and quickly. The ultimate goal of this research is to make the concentrating solar power technology cost competitive with conventional energy technology facilitating its ongoing research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Only some of the information contained in a medical record will be useful to the prediction of patient outcome. We describe a novel method for selecting those outcome predictors which allow us to reliably discriminate between adverse and benign end results. Using the area under the receiver operating characteristic as a nonparametric measure of discrimination, we show how to calculate the maximum discrimination attainable with a given set of discrete valued features. This upper limit forms the basis of our feature selection algorithm. We use the algorithm to select features (from maternity records) relevant to the prediction of failure to progress in labour. The results of this analysis motivate investigation of those predictors of failure to progress relevant to parous and nulliparous sub-populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study developed a comprehensive research methodology for identification and quantification of sources responsible for pollutant build-up and wash-off from urban road surfaces. The study identified soil and asphalt wear, and non-combusted diesel fuel as the most influential sources for metal and hydrocarbon pollution respectively. The study also developed mathematical models to relate contributions from identified sources to underlying site specific factors such as land use and traffic. Developed mathematical model will play a key role in urban planning practices, enabling the implementation of effective water pollution control strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater modelling studies rely on an accurate determination of inputs and outputs that make up the water balance. Often there is large uncertainty associated with estimates of recharge and unmetered groundwater use. This can translate to equivalent uncertainty in the forecasting of sustainable yields, impacts of extraction, and susceptibility of groundwater dependent ecosystems. In the case of Coal Seam Gas, it is important to characterise the temporal and special distribution of depressurisation in the reservoir and how this may or may not extend to the adjacent aquifers. A regional groundwater flow model has been developed by the Queensland Government to predict drawdown impacts due to Coal Seam Gas activities in the Surat basin. This groundwater model is undergoing continued refinement and there is currently scope to address some of the key areas of uncertainty including better quantification of groundwater recharge and unmetered groundwater extractions. Research is currently underway to improve the accuracy of estimates of both of these components of the groundwater balance in order to reduce uncertainty in predicted groundwater drawdowns due to CSG activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Many koala populations around Australia are in serious decline, with a substantial component of this decline in some Southeast Queensland populations attributed to the impact of Chlamydia. A Chlamydia vaccine for koalas is in development and has shown promise in early trials. This study contributes to implementation preparedness by simulating vaccination strategies designed to reverse population decline and by identifying which age and sex category it would be most effective to target. METHODS We used field data to inform the development and parameterisation of an individual-based stochastic simulation model of a koala population endemic with Chlamydia. The model took into account transmission, morbidity and mortality caused by Chlamydia infections. We calibrated the model to characteristics of typical Southeast Queensland koala populations. As there is uncertainty about the effectiveness of the vaccine in real-world settings, a variety of potential vaccine efficacies, half-lives and dosing schedules were simulated. RESULTS Assuming other threats remain constant, it is expected that current population declines could be reversed in around 5-6 years if female koalas aged 1-2 years are targeted, average vaccine protective efficacy is 75%, and vaccine coverage is around 10% per year. At lower vaccine efficacies the immunological effects of boosting become important: at 45% vaccine efficacy population decline is predicted to reverse in 6 years under optimistic boosting assumptions but in 9 years under pessimistic boosting assumptions. Terminating a successful vaccination programme at 5 years would lead to a rise in Chlamydia prevalence towards pre-vaccination levels. CONCLUSION For a range of vaccine efficacy levels it is projected that population decline due to endemic Chlamydia can be reversed under realistic dosing schedules, potentially in just 5 years. However, a vaccination programme might need to continue indefinitely in order to maintain Chlamydia prevalence at a sufficiently low level for population growth to continue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Two symposia on “cardiovascular diseases and vulnerable plaques” Cardiovascular disease (CVD) is the leading cause of death worldwide. Huge effort has been made in many disciplines including medical imaging, computational modeling, bio- mechanics, bioengineering, medical devices, animal and clinical studies, population studies as well as genomic, molecular, cellular and organ-level studies seeking improved methods for early detection, diagnosis, prevention and treatment of these diseases [1-14]. However, the mechanisms governing the initiation, progression and the occurrence of final acute clinical CVD events are still poorly understood. A large number of victims of these dis- eases who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs [8,9]. Most cardiovascular diseases are associated with vulnerable plaques. A grand challenge here is to develop new imaging techniques, predictive methods and patient screening tools to identify vulnerable plaques and patients who are more vulnerable to plaque rupture and associated clinical events such as stroke and heart attack, and recommend proper treatment plans to prevent those clinical events from happening. Articles in this special issue came from two symposia held recently focusing on “Cardio-vascular Diseases and Vulnerable Plaques: Data, Modeling, Predictions and Clinical Applications.” One was held at Worcester Polytechnic Institute (WPI), Worcester, MA, USA, July 13-14, 2014, right after the 7th World Congress of Biomechanics. This symposium was endorsed by the World Council of Biomechanics, and partially supported by a grant from NIH-National Institute of Biomedical Image and Bioengineering. The other was held at Southeast University (SEU), Nanjing, China, April 18-20, 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To obtain data on phytoplankton dynamics with improved spatial and temporal resolution, and at reduced cost, traditional phytoplankton monitoring methods have been supplemented with optical approaches. In this thesis, I have explored various fluorescence-based techniques for detection of phytoplankton abundance, taxonomy and physiology in the Baltic Sea. In algal cultures used in this thesis, the availability of nitrogen and light conditions caused changes in pigmentation, and consequently in light absorption and fluorescence properties of cells. In the Baltic Sea, physical environmental factors (e.g. mixing depth, irradiance and temperature) and related seasonal succession in the phytoplankton community explained a large part of the seasonal variability in the magnitude and shape of Chlorophyll a (Chla)-specific absorption. The variability in Chla-specific fluorescence was related to the abundance of cyanobacteria, the size structure of the phytoplankton community, and absorption characteristics of phytoplankton. Cyanobacteria show very low Chla-specific fluorescence. In the presence of eukaryotic species, Chla fluorescence describes poorly cyanobacteria. During cyanobacterial bloom in the Baltic Sea, phycocyanin fluorescence explained large part of the variability in Chla concentrations. Thus, both Chla and phycocyanin fluorescence were required to predict Chla concentration. Phycobilins are major light harvesting pigments for cyanobacteria. In the open Baltic Sea, small picoplanktonic cyanobacteria were the main source of phycoerythrin fluorescence and absorption signal. Large filamentous cyanobacteria, forming harmful blooms, were the main source of the phycocyanin fluorescence signal and typically their biomass and phycocyanin fluorescence were linearly related. Using phycocyanin fluorescence, dynamics of cyanobacterial blooms can be detected at high spatial and seasonal resolution not possible with other methods. Various taxonomic phytoplankton pigment groups can be separated by spectral fluorescence. I compared multivariate calibration methods for the retrieval of phytoplankton biomass in different taxonomic groups. Partial least squares regression method gave the closest predictions for all taxonomic groups, and the accuracy was adequate for phytoplankton bloom detection. Variable fluorescence has been proposed as a tool to study the physiological state of phytoplankton. My results from the Baltic Sea emphasize that variable fluorescence alone cannot be used to detect nutrient limitation of phytoplankton. However, when combined with experiments with active nutrient manipulation, and other nutrient limitation indices, variable fluorescence provided valuable information on the physiological responses of the phytoplankton community. This thesis found a severe limitation of a commercial fast repetition rate fluorometer, which couldn t detect the variable fluorescence of phycoerythrin-lacking cyanobacteria. For these species, the Photosystem II absorption of blue light is very low, and fluorometer excitation light did not saturate Photosystem II during a measurement. This thesis encourages the use of various in vivo fluorescence methods for the detection of bulk phytoplankton biomass, biomass of cyanobacteria, chemotaxonomy of phytoplankton community, and phytoplankton physiology. Fluorescence methods can support traditional phytoplankton monitoring by providing continuous measurements of phytoplankton, and thereby strengthen the understanding of the links between biological, chemical and physical processes in aquatic ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Earth's ecosystems are protected from the dangerous part of the solar ultraviolet (UV) radiation by stratospheric ozone, which absorbs most of the harmful UV wavelengths. Severe depletion of stratospheric ozone has been observed in the Antarctic region, and to a lesser extent in the Arctic and midlatitudes. Concern about the effects of increasing UV radiation on human beings and the natural environment has led to ground based monitoring of UV radiation. In order to achieve high-quality UV time series for scientific analyses, proper quality control (QC) and quality assurance (QA) procedures have to be followed. In this work, practices of QC and QA are developed for Brewer spectroradiometers and NILU-UV multifilter radiometers, which measure in the Arctic and Antarctic regions, respectively. These practices are applicable to other UV instruments as well. The spectral features and the effect of different factors affecting UV radiation were studied for the spectral UV time series at Sodankylä. The QA of the Finnish Meteorological Institute's (FMI) two Brewer spectroradiometers included daily maintenance, laboratory characterizations, the calculation of long-term spectral responsivity, data processing and quality assessment. New methods for the cosine correction, the temperature correction and the calculation of long-term changes of spectral responsivity were developed. Reconstructed UV irradiances were used as a QA tool for spectroradiometer data. The actual cosine correction factor was found to vary between 1.08-1.12 and 1.08-1.13. The temperature characterization showed a linear temperature dependence between the instrument's internal temperature and the photon counts per cycle. Both Brewers have participated in international spectroradiometer comparisons and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002-2010. The features of the spectral UV radiation time series at Sodankylä were analysed for the time period 1990-2001. No statistically significant long-term changes in UV irradiances were found, and the results were strongly dependent on the time period studied. Ozone was the dominant factor affecting UV radiation during the springtime, whereas clouds played a more important role during the summertime. During this work, the Antarctic NILU-UV multifilter radiometer network was established by the Instituto Nacional de Meteorogía (INM) as a joint Spanish-Argentinian-Finnish cooperation project. As part of this work, the QC/QA practices of the network were developed. They included training of the operators, daily maintenance, regular lamp tests and solar comparisons with the travelling reference instrument. Drifts of up to 35% in the sensitivity of the channels of the NILU-UV multifilter radiometers were found during the first four years of operation. This work emphasized the importance of proper QC/QA, including regular lamp tests, for the multifilter radiometers also. The effect of the drifts were corrected by a method scaling the site NILU-UV channels to those of the travelling reference NILU-UV. After correction, the mean ratios of erythemally-weighted UV dose rates measured during solar comparisons between the reference NILU-UV and the site NILU-UVs were 1.007±0.011 and 1.012±0.012 for Ushuaia and Marambio, respectively, when the solar zenith angle varied up to 80°. Solar comparisons between the NILU-UVs and spectroradiometers showed a ±5% difference near local noon time, which can be seen as proof of successful QC/QA procedures and transfer of irradiance scales. This work also showed that UV measurements made in the Arctic and Antarctic can be comparable with each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several methods are available for predicting flexural strength of steel fiber concrete composites. In these methods, direct tensile strength, split cylinder strength, and cube strength are the basic engineering parameters that must be determined to predict the flexural strength of such composites. Various simplified forms of stress distribution are used in each method to formulate the prediction equations for flexural strength. In this paper, existing methods are reviewed and compared, and a modified empirical approach is developed to predict the flexural strength of fiber concrete composites. The direct tensile strength of the composite is used as the basic parameter in this approach. Stress distribution is established from the findings of flexural tests conducted as part of this investigation on fiber concrete prisms. A comparative study of the test values of an earlier investigation on fiber concrete slabs and the computed values from existing methods, including the one proposed, is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of uncertainties on performance predictions of a helicopter is studied in this article. The aeroelastic parameters such as the air density, blade profile drag coefficient, main rotor angular velocity, main rotor radius, and blade chord are considered as uncertain variables. The propagation of these uncertainties in the performance parameters such as thrust coefficient, figure of merit, induced velocity, and power required are studied using Monte Carlo simulation and the first-order reliability method. The Rankine-Froude momentum theory is used for performance prediction in hover, axial climb, and forward flight. The propagation of uncertainty causes large deviations from the baseline deterministic predictions, which undoubtedly affect both the achievable performance and the safety of the helicopter. The numerical results in this article provide useful bounds on helicopter power requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The validity of various qualitative proposals for interpreting and predicting the existence of short contacts between formally non-bonded atoms, as in cyclodisiloxane and related inorganic ring systems, is critically evaluated. The models range from simple considerations of geometric constraints, lone pair repulsions and pi-complex formation to proposals such as the unsupported pi-bond model and the sigma-bridged-pi bond concept. It is pointed out that a unified description based on a combination of closed and open 3-centre 2-electron bonds is possible. The role of hybridisation is emphasized in the short phantom bond computed in an earlier model system. These insights are used to predict structures with exceptionally short Si..Si and B..B phantom bonds. The proposals are confirmed by ab initio calculations.