967 resultados para INTERVAL ESTIMATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This investigation compares two different methodologies for calculating the national cost of epilepsy: provider-based survey method (PBSM) and the patient-based medical charts and billing method (PBMC&BM). The PBSM uses the National Hospital Discharge Survey (NHDS), the National Hospital Ambulatory Medical Care Survey (NHAMCS) and the National Ambulatory Medical Care Survey (NAMCS) as the sources of utilization. The PBMC&BM uses patient data, charts and billings, to determine utilization rates for specific components of hospital, physician and drug prescriptions. ^ The 1995 hospital and physician cost of epilepsy is estimated to be $722 million using the PBSM and $1,058 million using the PBMC&BM. The difference of $336 million results from $136 million difference in utilization and $200 million difference in unit cost. ^ Utilization. The utilization difference of $136 million is composed of an inpatient variation of $129 million, $100 million hospital and $29 million physician, and an ambulatory variation of $7 million. The $100 million hospital variance is attributed to inclusion of febrile seizures in the PBSM, $−79 million, and the exclusion of admissions attributed to epilepsy, $179 million. The former suggests that the diagnostic codes used in the NHDS may not properly match the current definition of epilepsy as used in the PBMC&BM. The latter suggests NHDS errors in the attribution of an admission to the principal diagnosis. ^ The $29 million variance in inpatient physician utilization is the result of different per-day-of-care physician visit rates, 1.3 for the PBMC&BM versus 1.0 for the PBSM. The absence of visit frequency measures in the NHDS affects the internal validity of the PBSM estimate and requires the investigator to make conservative assumptions. ^ The remaining ambulatory resource utilization variance is $7 million. Of this amount, $22 million is the result of an underestimate of ancillaries in the NHAMCS and NAMCS extrapolations using the patient visit weight. ^ Unit cost. The resource cost variation is $200 million, inpatient is $22 million and ambulatory is $178 million. The inpatient variation of $22 million is composed of $19 million in hospital per day rates, due to a higher cost per day in the PBMC&BM, and $3 million in physician visit rates, due to a higher cost per visit in the PBMC&BM. ^ The ambulatory cost variance is $178 million, composed of higher per-physician-visit costs of $97 million and higher per-ancillary costs of $81 million. Both are attributed to the PBMC&BM's precise identification of resource utilization that permits accurate valuation. ^ Conclusion. Both methods have specific limitations. The PBSM strengths are its sample designs that lead to nationally representative estimates and permit statistical point and confidence interval estimation for the nation for certain variables under investigation. However, the findings of this investigation suggest the internal validity of the estimates derived is questionable and important additional information required to precisely estimate the cost of an illness is absent. ^ The PBMC&BM is a superior method in identifying resources utilized in the physician encounter with the patient permitting more accurate valuation. However, the PBMC&BM does not have the statistical reliability of the PBSM; it relies on synthesized national prevalence estimates to extrapolate a national cost estimate. While precision is important, the ability to generalize to the nation may be limited due to the small number of patients that are followed. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The late Neogene was a time of cryosphere development in the northern hemisphere. The present study was carried out to estimate the sea surface temperature (SST) change during this period based on the quantitative planktonic foraminiferal data of 8 DSDP sites in the western Pacific. Target factor analysis has been applied to the conventional transfer function approach to overcome the no-analog conditions caused by evolutionary faunal changes. By applying this technique through a combination of time-slice and time-series studies, the SST history of the last 5.3 Ma has been reconstructed for the low latitude western Pacific. Although the present data set is close to the statistical limits of factor analysis, the clear presence of sensible variations in individual SST time-series suggests the feasibility and reliability of this method in paleoceanographic studies. The estimated SST curves display the general trend of the temperature fluctuations and reveal three major cool periods in the late Neogene, i.e. the early Pliocene (4.7 3.5 Ma), the late Pliocene (3.1-2.7 Ma), and the latest Pliocene to early Pleistocene (2.2-1.0 Ma). Cool events are reflected in the increase of seasonality and meridional SST gradient in the subtropical area. The latest Pliocene to early Pleistocene cooling is most important in the late Neogene climatic evolution. It differs from the previous cool events in its irreversible, steplike change in SST, which established the glacial climate characteristic of the late Pleistocene. The winter and summer SST decreased by 3.3-5.4°C and 1.0 2.1C in the subtropics, by 0.9°C and 0.6C in the equatorial region, and showed little or no cooling in the tropics. Moreover, this cooling event occurred as a gradual SST decrease during 2.2 1.0 Ma at the warmer subtropical sites, while that at cooler subtropical site was an abrupt SST drop at 2.2 Ma. In contrast, equatorial and tropical western Pacific experienced only minor SST change in the entire late Neogene. In general, subtropics was much more sensitive to climatic forcing than tropics and the cooling events were most extensive in the cooler subtropics. The early Pliocene cool periods can be correlated to the Antarctic ice volume fluctuation, and the latest Pliocene early Pleistocene cooling reflects the climatic evolution during the cryosphere development of the northern hemisphere.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the rapid development of various technologies and applications in smart grid implementation, demand response has attracted growing research interests because of its potentials in enhancing power grid reliability with reduced system operation costs. This paper presents a new demand response model with elastic economic dispatch in a locational marginal pricing market. It models system economic dispatch as a feedback control process, and introduces a flexible and adjustable load cost as a controlled signal to adjust demand response. Compared with the conventional “one time use” static load dispatch model, this dynamic feedback demand response model may adjust the load to a desired level in a finite number of time steps and a proof of convergence is provided. In addition, Monte Carlo simulation and boundary calculation using interval mathematics are applied for describing uncertainty of end-user's response to an independent system operator's expected dispatch. A numerical analysis based on the modified Pennsylvania-Jersey-Maryland power pool five-bus system is introduced for simulation and the results verify the effectiveness of the proposed model. System operators may use the proposed model to obtain insights in demand response processes for their decision-making regarding system load levels and operation conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este trabalho teve como objetivo principal avaliar a importância da inclusão dos efeitos genético materno, comum de leitegada e de ambiente permanente no modelo de estimação de componentes de variância para a característica intervalo de parto em fêmeas suínas. Foram utilizados dados que consistiam de 1.013 observações de fêmeas Dalland (C-40), registradas em dois rebanhos. As estimativas dos componentes de variância foram realizadas pelo método da máxima verossimilhança restrita livre de derivadas. Foram testados oito modelos, que continham os efeitos fixos (grupos de contemporâneo e covariáveis) e os efeitos genético aditivo direto e residual, mas variavam quanto à inclusão dos efeitos aleatórios genético materno, ambiental comum de leitegada e ambiental permanente. O teste da razão de verossimilhança (LR) indicou a não necessidade da inclusão desses efeitos no modelo. No entanto observou-se que o efeito ambiental permanente causou mudança nas estimativas de herdabilidade, que variaram de 0,00 a 0,03. Conclui-se que os valores de herdabilidade obtidos indicam que esta característica não apresentaria ganho genético como resposta à seleção. O efeito ambiental comum de leitegada e o genético materno não apresentaram influência sobre esta característica. Já o ambiental permanente, mesmo sem ter sido significativo o seu efeito pelo LR, deve ser considerado nos modelos genéticos para essa característica, pois sua presença causou mudança nas estimativas da variância genética aditiva.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Standard methods for the estimation of the postmortem interval (PMI, time since death), based on the cooling of the corpse, are limited to about 48 h after death. As an alternative, noninvasive postmortem observation of alterations of brain metabolites by means of (1)H MRS has been suggested for an estimation of the PMI at room temperature, so far without including the effect of other ambient temperatures. In order to study the temperature effect, localized (1)H MRS was used to follow brain decomposition in a sheep brain model at four different temperatures between 4 and 26°C with repeated measurements up to 2100 h postmortem. The simultaneous determination of 25 different biochemical compounds at each measurement allowed the time courses of concentration changes to be followed. A sudden and almost simultaneous change of the concentrations of seven compounds was observed after a time span that decreased exponentially from 700 h at 4°C to 30 h at 26°C ambient temperature. As this represents, most probably, the onset of highly variable bacterial decomposition, and thus defines the upper limit for a reliable PMI estimation, data were analyzed only up to this start of bacterial decomposition. As 13 compounds showed unequivocal, reproducible concentration changes during this period while eight showed a linear increase with a slope that was unambiguously related to ambient temperature. Therefore, a single analytical function with PMI and temperature as variables can describe the time courses of metabolite concentrations. Using the inverse of this function, metabolite concentrations determined from a single MR spectrum can be used, together with known ambient temperatures, to calculate the PMI of a corpse. It is concluded that the effect of ambient temperature can be reliably included in the PMI determination by (1)H MRS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In biostatistical applications interest often focuses on the estimation of the distribution of a time-until-event variable T. If one observes whether or not T exceeds an observed monitoring time at a random number of monitoring times, then the data structure is called interval censored data. We extend this data structure by allowing the presence of a possibly time-dependent covariate process that is observed until end of follow up. If one only assumes that the censoring mechanism satisfies coarsening at random, then, by the curve of dimensionality, typically no regular estimators will exist. To fight the curse of dimensionality we follow the approach of Robins and Rotnitzky (1992) by modeling parameters of the censoring mechanism. We model the right-censoring mechanism by modeling the hazard of the follow up time, conditional on T and the covariate process. For the monitoring mechanism we avoid modeling the joint distribution of the monitoring times by only modeling a univariate hazard of the pooled monitoring times, conditional on the follow up time, T, and the covariates process, which can be estimated by treating the pooled sample of monitoring times as i.i.d. In particular, it is assumed that the monitoring times and the right-censoring times only depend on T through the observed covariate process. We introduce inverse probability of censoring weighted (IPCW) estimator of the distribution of T and of smooth functionals thereof which are guaranteed to be consistent and asymptotically normal if we have available correctly specified semiparametric models for the two hazards of the censoring process. Furthermore, given such correctly specified models for these hazards of the censoring process, we propose a one-step estimator which will improve on the IPCW estimator if we correctly specify a lower-dimensional working model for the conditional distribution of T, given the covariate process, that remains consistent and asymptotically normal if this latter working model is misspecified. It is shown that the one-step estimator is efficient if each subject is at most monitored once and the working model contains the truth. In general, it is shown that the one-step estimator optimally uses the surrogate information if the working model contains the truth. It is not optimal in using the interval information provided by the current status indicators at the monitoring times, but simulations in Peterson, van der Laan (1997) show that the efficiency loss is small.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we propose methods for smooth hazard estimation of a time variable where that variable is interval censored. These methods allow one to model the transformed hazard in terms of either smooth (smoothing splines) or linear functions of time and other relevant time varying predictor variables. We illustrate the use of this method on a dataset of hemophiliacs where the outcome, time to seroconversion for HIV, is interval censored and left-truncated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accurate knowledge of the time since death, or postmortem interval (PMI), has enormous legal, criminological, and psychological impact. In this study, an investigation was made to determine whether the relationship between the degradation of the human cardiac structure protein Cardiac Troponin T and PMI could be used as an indicator of time since death, thus providing a rapid, high resolution, sensitive, and automated methodology for the determination of PMI. ^ The use of Cardiac Troponin T (cTnT), a protein found in heart tissue, as a selective marker for cardiac muscle damage has shown great promise in the determination of PMI. An optimized conventional immunoassay method was developed to quantify intact and fragmented cTnT. A small sample of cardiac tissue, which is less affected than other tissues by external factors, was taken, homogenized, extracted with magnetic microparticles, separated by SDS-PAGE, and visualized with Western blot by probing with monoclonal antibody against cTnT. This step was followed by labeling and available scanners. This conventional immunoassay provides a proper detection and quantitation of cTnT protein in cardiac tissue as a complex matrix; however, this method does not provide the analyst with immediate results. Therefore, a competitive separation method using capillary electrophoresis with laser-induced fluorescence (CE-LIF) was developed to study the interaction between human cTnT protein and monoclonal anti-TroponinT antibody. ^ Analysis of the results revealed a linear relationship between the percent of degraded cTnT and the log of the PMI, indicating that intact cTnT could be detected in human heart tissue up to 10 days postmortem at room temperature and beyond two weeks at 4C. The data presented demonstrates that this technique can provide an extended time range during which PMI can be more accurately estimated as compared to currently used methods. The data demonstrates that this technique represents a major advance in time of death determination through a fast and reliable, semi-quantitative measurement of a biochemical marker from an organ protected from outside factors. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a model to estimate travel time using cumulative plots. Three different cases considered are i) case-Det, for only detector data; ii) case-DetSig, for detector data and signal controller data and iii) case-DetSigSFR: for detector data, signal controller data and saturation flow rate. The performance of the model for different detection intervals is evaluated. It is observed that detection interval is not critical if signal timings are available. Comparable accuracy can be obtained from larger detection interval with signal timings or from shorter detection interval without signal timings. The performance for case-DetSig and for case-DetSigSFR is consistent with accuracy generally more than 95% whereas, case-Det is highly sensitive to the signal phases in the detection interval and its performance is uncertain if detection interval is integral multiple of signal cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the preliminary results in establishing a strategy for predicting Zenith Tropospheric Delay (ZTD) and relative ZTD (rZTD) between Continuous Operating Reference Stations (CORS) in near real-time. It is anticipated that the predicted ZTD or rZTD can assist the network-based Real-Time Kinematic (RTK) performance over long inter-station distances, ultimately, enabling a cost effective method of delivering precise positioning services to sparsely populated regional areas, such as Queensland. This research firstly investigates two ZTD solutions: 1) the post-processed IGS ZTD solution and 2) the near Real-Time ZTD solution. The near Real-Time solution is obtained through the GNSS processing software package (Bernese) that has been deployed for this project. The predictability of the near Real-Time Bernese solution is analyzed and compared to the post-processed IGS solution where it acts as the benchmark solution. The predictability analyses were conducted with various prediction time of 15, 30, 45, and 60 minutes to determine the error with respect to timeliness. The predictability of ZTD and relative ZTD is determined (or characterized) by using the previously estimated ZTD as the predicted ZTD of current epoch. This research has shown that both the ZTD and relative ZTD predicted errors are random in nature; the STD grows from a few millimeters to sub-centimeters while the predicted delay interval ranges from 15 to 60 minutes. Additionally, the RZTD predictability shows very little dependency on the length of tested baselines of up to 1000 kilometers. Finally, the comparison of near Real-Time Bernese solution with IGS solution has shown a slight degradation in the prediction accuracy. The less accurate NRT solution has an STD error of 1cm within the delay of 50 minutes. However, some larger errors of up to 10cm are observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we investigate an alternative bootstrap approach based on a result of Ramsey [F.L. Ramsey, Characterization of the partial autocorrelation function, Ann. Statist. 2 (1974), pp. 1296-1301] and on the Durbin-Levinson algorithm to obtain a surrogate series from linear Gaussian processes with long range dependence. We compare this bootstrap method with other existing procedures in a wide Monte Carlo experiment by estimating, parametrically and semi-parametrically, the memory parameter d. We consider Gaussian and non-Gaussian processes to prove the robustness of the method to deviations from normality. The approach is also useful to estimate confidence intervals for the memory parameter d by improving the coverage level of the interval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a model for estimation of average travel time and its variability on signalized urban networks using cumulative plots. The plots are generated based on the availability of data: a) case-D, for detector data only; b) case-DS, for detector data and signal timings; and c) case-DSS, for detector data, signal timings and saturation flow rate. The performance of the model for different degrees of saturation and different detector detection intervals is consistent for case-DSS and case-DS whereas, for case-D the performance is inconsistent. The sensitivity analysis of the model for case-D indicates that it is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.