887 resultados para Human Insulin Mutant


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Diabetes is a chronic disease requiring continuous medical supervision and patient education to prevent acute secondary complications. In this study, we have harnessed the inherent property of insulin to aggregate into an oligomeric intermediate on the pathway to amyloid formation, to generate a form that exhibits controlled and sustained release for extended periods. Administration of a single dose of the insulin oligomer, defined here as the supramolecular insulin assembly II (SIA-II), to experimental animals rendered diabetic by streptozotocin or alloxan, released the hormone capable of maintaining physiologic glucose levels for > 120 days for bovine and > 140 days for recombinant human insulin without fasting hypoglycemia. Moreover, the novel SIA-II described here not only improved the glycemic control, but also reduced the extent of secondary diabetic complications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Standard or 'traditional' human insulin preparations such as regular soluble insulin and neutral protamine Hagedorn (NPH) insulin have shortcomings in terms of their pharmacokinetic and pharmacodynamic properties that limit their clinical efficacy. Structurally modified insulin molecules or insulin 'analogs' have been developed with the aim of delivering insulin replacement therapy in a more physiological manner. In the last 10 years, five insulin analog preparations have become commercially available for clinical use in patients with type 1 diabetes mellitus: three 'rapid' or fast-acting analogs (insulin lispro, aspart, and glulisine) and two long-acting analogs (insulin glargine and detemir). This review highlights the specific pharmacokinetic properties of these new insulin analog preparations and focuses on their potential clinical advantages and disadvantages when used in children and adolescents with type 1 diabetes mellitus. The fast-acting analogs specifically facilitate more flexible insulin injection timing with regard to meals and activities, whereas the long-acting analogs have a more predictable profile of action and lack a peak effect. To date, clinical trials in children and adolescents have been few in number, but the evidence available from these and from other studies carried out in adults with type 1 diabetes suggest that they offer significant benefits in terms of reduced frequency of nocturnal hypoglycemia, better postprandial blood glucose control, and improved quality of life when compared with traditional insulins. In addition, insulin detemir therapy is unique in that patients may benefit from reduced risk of excessive weight, particularly during adolescence. Evidence for sustained long-term improvements in glycosylated hemoglobin, on the other hand, is modest. Furthermore, alterations to insulin/insulin-like growth factor I receptor binding characteristics have also raised theoretical concerns that insulin analogs may have an increased mitogenic potential and risk of tumor development, although evidence from both in vitro and in vivo animal studies do not support this assertion. Long-term surveillance has been recommended and further carefully designed prospective studies are needed to evaluate the overall benefits and clinical efficacy of insulin analog therapy in children and adolescents with type 1 diabetes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous studies have shown that glycation of insulin occurs in pancreatic beta -cells under conditions of hyperglycaemia and that the site of glycation is the N-terminal Phe(1) of the insulin B-chain. To enable evaluation of glycated insulin in diabetes, specific antibodies were raised in rabbits and guinea-pigs by using two synthetic peptides (A: Phe-Val-Asn-Gln-His-Leu-Cys-Tyr, and B: Phe-Val-Asn-Gln-His-Leu-Tyr-Lys) modified by N-terminal glycation and corresponding closely to the N-terminal sequence of the glycated human insulin B-chain. For immunization, the glycated peptides were conjugated either to keyhole limper haemocyanin or ovalbumin using glutaraldehyde, m-maleimidobenzoyl-N-hydroxysuccinimide ester or 1-ethyl-3-(3-dimethylamino propyl) carbodiimide hydrochloride. Antibody titration curves, obtained using I-125-tyrosylated tracer prepared from glycated peptide A, revealed high-titre antisera in five groups of animals immunized for 8-28 weeks. The highest titres were observed in rabbits and guinea-pigs immunized with peptide B coupled to ovalbumin using glutaraldehyde. Under radioimmunoassay conditions, these antisera exhibited effective dose (median) (ED50) values for glycated insulin of 0.3-15 ng/ml and 0.9-2.5 ng/ml respectively, with negligible cross-reactivity against insulin or other islet peptides. The degree of cross-reaction with glycated proinsulin was approximately 50%. Glycated insulin in plasma of control and hydrocortisone-treated diabetic rats measured using rabbit 3 antiserum (1:10 000 dilution; sensitivity

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to investigate the hormonal regulation of the avian homolog of mammalian uncoupling protein (avUCP) by studying the impact of thyroid hormones and insulin on avUCP mRNA expression in chickens (Gallus gallus). For 3 wk, chicks received either a standard diet (control group), or a standard diet supplemented with triiodothyronine (T-3; T3 group) or with the thyroid gland inhibitor methimazole (MMI group). A fourth group received injections of the deiodinase inhibitor iopanoic acid (IOP group). During the 4th wk of age, all animals received two daily injections of either human insulin or saline solution. The results indicate a twofold overexpression of avUCP mRNA in gastrocnemius muscle of T3 birds and a clear downregulation (-74%) in MMI chickens compared with control chickens. Insulin injections had no significant effect on avUCP mRNA expression in chickens. This study describes for the first time induction of avUCP mRNA expression by the thermogenic hormone T3 in chickens and supports a possible involvement of avUCP in avian thermogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The β cell-specific glucose-sensitive factor (GSF), which binds the A3 motif of the rat I and human insulin promoters, is modulated by extracellular glucose. A single mutation in the GSF binding site of the human insulin promoter abolishes the stimulation by high glucose only in normal islets, supporting the suggested physiological role of GSF in the glucose-regulated expression of the insulin gene. GSF binding activity was observed in all insulin-producing cells. We have therefore purified this activity from the rat insulinoma RIN and found that a single polypeptide of 45 kDa was responsible for DNA binding. Its amino acid sequence, determined by microsequencing, provided direct evidence that GSF corresponds to insulin promoter factor 1 (IPF-1; also known as PDX-1) and that, in addition to its essential roles in development and differentiation of pancreatic islets and in β cell-specific gene expression, it functions as mediator of the glucose effect on insulin gene transcription in differentiated β cells. The human cDNA coding for GSF/IPF-1 has been cloned, its cell and tissue distribution is described. Its expression in the glucagon-producing cell line αTC1 transactivates the wild-type human insulin promoter more efficiently than the mutated construct. It is demonstrated that high levels of ectopic GSF/IPF-1 inhibit the expression of the human insulin gene in normal islets, but not in transformed βTC1 cells. These results suggest the existence of a control mechanism, such as requirement for a coactivator of GSF/IPF-1, which may be present in limiting amounts in normal as opposed to transformed β cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transgenic mice were generated in which the cDNA for the human insulin-like growth factor 1B (IGF-1B) was placed under the control of a rat alpha-myosin heavy chain promoter. In mice heterozygous for the transgene, IGF-1B mRNA was not detectable in the fetal heart at the end of gestation, was present in modest levels at 1 day after birth, and increased progressively with postnatal maturation, reaching a peak at 75 days. Myocytes isolated from transgenic mice secreted 1.15 +/- 0.25 ng of IGF-1 per 10(6) cells per 24 hr versus 0.27 +/- 0.10 ng in myocytes from homozygous wild-type littermates. The plasma level of IGF-1 increased 84% in transgenic mice. Heart weight was comparable in wild-type littermates and transgenic mice up to 45 days of age, but a 42%, 45%, 62%, and 51% increase was found at 75, 135, 210, and 300 days, respectively, after birth. At 45, 75, and 210 days, the number of myocytes in the heart was 21%, 31%, and 55% higher, respectively, in transgenic animals. In contrast, myocyte cell volume was comparable in transgenic and control mice at all ages. In conclusion, overexpression of IGF-1 in myocytes leads to cardiomegaly mediated by an increased number of cells in the heart.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Insulin was immobilized on a surface-hydrolyzed poly(methyl methacrylate) film. Chinese hamster ovary cells overexpressing human insulin receptors were cultured on the film in the absence of serum or soluble proteins. Small amounts of immobilized insulin (1-10% of the required amount of free insulin) were sufficient to stimulate cell proliferation. In addition, the maximal mitogenic effect of immobilized insulin was greater than that of free insulin. Immobilized insulin activated the insulin receptor and downstream signaling proteins, and this activation persisted for longer periods than that obtained with free insulin, probably explaining the greater mitogenic effect of the immobilized insulin. Finally the immobilized-insulin film was usable repeatedly without marked loss of activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Early neurogenesis progresses by an initial massive proliferation of neuroepithelial cells followed by a sequential differentiation of the various mature neural cell types. The regulation of these processes by growth factors is poorly understood. We intend to understand, in a well-defined biological system, the embryonic chicken retina, the role of the insulin-related growth factors in neurogenesis. We demonstrate the local presence of signaling elements together with a biological response to the factors. Neuroretina at days 6-8 of embryonic development (E6-E8) expressed proinsulin/insulin and insulin-like growth factor I (IGF-I) mRNAs as well as insulin receptor and IGF type I receptor mRNAs. In parallel with this in vivo gene expression, E5 cultured neuroretinas synthesized and released to the medium a metabolically radiolabeled immunoprecipitable insulin-related peptide. Furthermore, insulin-related immunoreactive material with a HPLC mobility close to that of proinsulin was found in the E6-E8 vitreous humor. Exogenous chicken IGF-I, human insulin, and human proinsulin added to E6 cultured neuroretinas showed relatively close potencies stimulating proliferation, as determined by [methyl-3H]thymidine incorporation, with a plateau reached at 10(-8) M. These factors also stimulated neuronal differentiation, indicated by the expression of the neuron-specific antigen G4. Thus, insulin-related growth factors, interestingly including proinsulin, are present in the developing chicken retina and appear to play an autocrine/paracrine stimulatory role in the progression of neurogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. RESULTS Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. CONCLUSIONS Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To further investigate the importance of insulin signaling in the growth, development, sexual maturation and egg production of adult schistosomes, we have focused attention on the insulin receptors (SjIRs) of Schistosoma japonicum, which we have previously cloned and partially characterised. We now show, by Biolayer Interferometry, that human insulin can bind the L1 subdomain (insulin binding domain) of recombinant (r)SjIR1 and rSjIR2 (designated SjLD1 and SjLD2) produced using the Drosophila S2 protein expression system. We have then used RNA interference (RNAi) to knock down the expression of the SjIRs in adult S. japonicum in vitro and show that, in addition to their reduced transcription, the transcript levels of other important downstream genes within the insulin pathway, associated with glucose metabolism and schistosome fecundity, were also impacted substantially. Further, a significant decrease in glucose uptake was observed in the SjIR-knockdown worms compared with luciferase controls. In vaccine/challenge experiments, we found that rSjLD1 and rSjLD2 depressed female growth, intestinal granuloma density and faecal egg production in S. japonicum in mice presented with a low dose challenge infection. These data re-emphasize the potential of the SjIRs as veterinary transmission blocking vaccine candidates against zoonotic schistosomiasis japonica in China and the Philippines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In summary, these results imply that the relationship of adiponectin with lipoproteins is more complex than previously predicted using other methods of lipoprotein fractionation. Higher correlation of adiponectin was shown with large lipoprotein particle size, independent of the apolipoprotein content. Given the small population studied, we could not assess the influence of mild risk factors for venous thrombosis, such as obesity, on the analysis of the results. Thus, we can only state that adiponectin levels appear not to be a strong risk factor for VTE. It is possible that adiponectin deficiency may contribute indirectly to the etiology of VTE by enhancing the inflammatory state. © 2006 International Society on Thrombosis and Haemostasis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN). Here, using Chinese hamster ovary (CHO) Niemann-Pick type C1 (NPC1) mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6) accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs). This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The major diabetes autoantigen, glutamic acid decarboxylase (GAD65), contains a region of sequence similarity, including six identical residues PEVKEK, to the P2C protein of coxsackie B virus, suggesting that cross-reactivity between coxsackie B virus and GAD65 can initiate autoimmune diabetes. We used the human islet cell mAbs MICA3 and MICA4 to identify the Ab epitopes of GAD65 by screening phage-displayed random peptide libraries. The identified peptide sequences could be mapped to a homology model of the pyridoxal phosphate (PLP) binding domain of GAD65. For MICA3, a surface loop containing the sequence PEVKEK and two adjacent exposed helixes were identified in the PLP binding domain as well as a region of the C terminus of GAD65 that has previously been identified as critical for MICA3 binding. To confirm that the loop containing tile PEVKEK sequence contributes to the MICA3 epitope, this loop was deleted by mutagenesis. This reduced binding of MICA3 by 70%. Peptide sequences selected using MICA4 were rich in basic or hydroxyl-containing amino acids, and the surface of the GAD65 PLP-binding domain surrounding Lys358, which is known to be critical for MICA4 binding, was likewise rich in these amino acids. Also, the two phage most reactive width MICA4 encoded the motif VALxG, and the reverse of this sequence, LAV, was located in this same region. Thus, we have defined the MICA3 and MICA4 epitopes on GAD65 using the combination of phage display, molecular modeling, and mutagenesis and have provided compelling evidence for the involvement of the PEVKEK loop in the MICA3 epitope.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mimicry of host antigens by infectious agents may induce cross-reactive autoimmune responses to epitopes within host proteins which, in susceptible individuals, may tip the balance of immunological response versus tolerance toward response and subsequently lead to autoimmune disease. Epitope mimicry may indeed be involved in the pathogenesis of several diseases such as post-viral myocarditis or Chagas disease, but for many other diseases in which it has been implicated, such as insulin-dependent diabetes mellitis or rheumatoid arthritis, convincing evidence is still lacking. Even if an epitope mimic can support a cross-reactive T or B cell response in vitro, its ability to induce an autoimmune disease in vivo will depend upon the appropriate presentation of the mimicked host antigen in the target tissue and, in the case of T cell mimics, the ability of the mimicking epitope to induce a proliferative rather than anergizing response upon engagement of the MHC-peptide complex with the T cell receptor. B cell presentation of mimicking foreign antigen to T cells is a possible mechanism for instigating an autoimmune response to self antigens that in turn can lead to autoimmune disease under particular conditions of antigen presentation, secondary signalling and effector cell repertoire. In this review evidence in support of epitope mimicry is examined in the light of the necessary immunological considerations of the theory.