904 resultados para High repetition rate heat capacity master oscillator power amplifier system
Resumo:
We present a novel high-energy, single-mode, all-fiber-based master-oscillator-power-amplifier (MOPA) laser system operating in the C-band with 3.3-ns pulses and a very widely tunable repetition rate, ranging from 30 kHz to 50 MHz. The laser with a maximum pulse energy of 25 mu J and a repetition rate of 30 kHz is obtained at, a wavelength of 1548 nm by using a double-clad, single-mode, Er:Yb co-doped fiber power amplifier.
Resumo:
The generation of 22 ps pulses with peak powers of 0.74 W by a gain-switched InGaN violet laser diode is reported. Significant pulse width dependence on repetition rate is observed. © 2011 OSA.
Resumo:
A simple actively Q-switched double-clad fiber laser combining an amplifying cavity is reported by using a dynamic acoustooptic Q-switching as a beam splitter. Sub-100-ns. pulses independence of the repetition rate of acoustooptic modulator are almost changeless with repetition rate varied from 50 kHz to 1.5 MHz. With 4.5-W absorbed power, 9.4-W peak-power pulses at 1.5-MHz repetition rate with 75-ns pulse duration are generated.
Resumo:
We have demonstrated a compact and an efficient passively Q-switched microchip Nd:YVO4 laser by using a composite semiconductor absorber as well as an output coupler. The composite semiconductor absorber was composed of an LT (low-temperature grown) In0.25Ga0.75As absorber and a pure GaAs absorber. To our knowledge, it was the first demonstration of the special absorber for Q-switching operation of microchip lasers. Laser pulses with durations of 1.1 ns were generated with a 350 mu m thick laser crystal and the repetition rate of the pulses was as high as 4.6 MHz. The average output power was 120 mW at the pump power of 700 mW. Pulse duration can be varied from 1.1 to 15.7 ns by changing the cavity length from 0.45 to 5 mm. Pulses with duration of 1.67 and 2.41 ns were also obtained with a 0.7 mm, thick laser crystal and a 1 mm thick laser crystal, respectively. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
A diode-pumped Nd:YVO4 laser passively Q switched by a semiconductor absorber is demonstrated. The Q-switched operation of the laser has an average output power of 135 mW with a 1.6 W incident pump power. The minimum pulse width is measured to be about 8.3 ns with a repetition rate of 2 MHz. To our knowledge, this is the first demonstration of a solid-state laser passively Q-switched by such a composite semiconductor absorber. (c) 2006 Optical Society of America.
Resumo:
We present a power-scalable approach for yellow laser-light generation based on standard Ytterbium (Yb) doped fibers. To force the cavity to lase at 1154 nm, far above the gain-maximum, measures must be taken to fulfill lasing condition and to suppress competing amplified spontaneous emission (ASE) in the high-gain region. To prove the principle we built a fiber-laser cavity and a fiber-amplifier both at 1154 nm. In between cavity and amplifier we suppressed the ASE by 70 dB using a fiber Bragg grating (FBG) based filter. Finally we demonstrated efficient single pass frequency doubling to 577 nm with a periodically poled lithium niobate crystal (PPLN). With our linearly polarized 1154 nm master oscillator power fiber amplifier (MOFA) system we achieved slope efficiencies of more than 15 % inside the cavity and 24 % with the fiber-amplifier. The frequency doubling followed the predicted optimal efficiency achievable with a PPLN crystal. So far we generated 1.5 W at 1154nm and 90 mW at 577 nm. Our MOFA approach for generation of 1154 nm laser radiation is power-scalable by using multi-stage amplifiers and large mode-area fibers and is therefore very promising for building a high power yellow laser-light source of several tens of Watt.
Resumo:
We report on the operational parameters that are required to fabricate buried, microstructured waveguides in a z-cut lithium niobate crystal by the method of direct femtosecond laser inscription using a highrepetition-rate, chirped-pulse oscillator system. Refractive index contrasts as high as −0.0127 have been achieved for individual modification tracks. The results pave the way for developing microstructured WGs with low-loss operation across a wide spectral range, extending into the mid-infrared region up to the end of the transparency range of the host material.
Resumo:
A single-longitudinal-mode (SLM) laser-diode pumped Nd: YAG laser with adjustable pulse width is developed by using the techniques of pre-lasing and changing polarization of birefingent crystal. The Q-switching voltage is triggered by the peak of the pre-lasing pulse to achieve the higher stability of output pulse energy. The output energy of more than 1 mJ is obtained with output energy stability of 3% (rms) at 100 Hz. The pulse-width can be adjusted from 30 ns to 300 ns by changing the Q-switching voltage. The probability of putting out single-longitudinal-mode pulses is almost 100%. The laser can be run over four hours continually without mode hopping.