977 resultados para Hecke Algebra
Resumo:
Learning to operate algebraically is a complex process that is dependent upon extending arithmetic knowledge to the more complex concepts of algebra. Current research has shown a gap between arithmetic and algebraic knowledge and suggests a pre-algebraic level as a step between the two knowledge types. This paper examines arithmetic and algebraic knowledge from a cognitive perspective in an effort to determine what constitutes a pre-algebraic level of understanding. Results of a longitudinal study designed to investigate students' readiness for algebra are presented. Thirty-three students in Grades 7, 8, and 9 participated. A model for the transition from arithmetic to pre-algebra to algebra is proposed and students' understanding of relevant knowledge is discussed.
Resumo:
The R statistical environment and language has demonstrated particular strengths for interactive development of statistical algorithms, as well as data modelling and visualisation. Its current implementation has an interpreter at its core which may result in a performance penalty in comparison to directly executing user algorithms in the native machine code of the host CPU. In contrast, the C++ language has no built-in visualisation capabilities, handling of linear algebra or even basic statistical algorithms; however, user programs are converted to high-performance machine code, ahead of execution. A new method avoids possible speed penalties in R by using the Rcpp extension package in conjunction with the Armadillo C++ matrix library. In addition to the inherent performance advantages of compiled code, Armadillo provides an easy-to-use template-based meta-programming framework, allowing the automatic pooling of several linear algebra operations into one, which in turn can lead to further speedups. With the aid of Rcpp and Armadillo, conversion of linear algebra centered algorithms from R to C++ becomes straightforward. The algorithms retains the overall structure as well as readability, all while maintaining a bidirectional link with the host R environment. Empirical timing comparisons of R and C++ implementations of a Kalman filtering algorithm indicate a speedup of several orders of magnitude.
Resumo:
This is an update of an earlier paper, and is written for Excel 2007. A series of Excel 2007 models is described. The more advanced versions allow solution of f(x)=0 by examining change of sign of function values. The function is graphed and change of sign easily detected by a change of colour. Relevant features of Excel 2007 used are Names, Scatter Chart and Conditional Formatting. Several sample Excel 2007 models are available for download, and the paper is intended to be used as a lesson plan for students having some familiarity with derivatives. For comparison and reference purposes, the paper also presents a brief outline of several common equation-solving strategies as an Appendix.
Resumo:
In this paper, we introduce a path algebra well suited for navigation in environments that can be abstracted as topological graphs. From this path algebra, we derive algorithms to reduce routes in such environments. The routes are reduced in the sense that they are shorter (contain fewer edges), but still connect the endpoints of the initial routes. Contrary to planning methods descended from Disjktra’s Shortest Path Algorithm like D , the navigation methods derived from our path algebra do not require any graph representation. We prove that the reduced routes are optimal when the graphs are without cycles. In the case of graphs with cycles, we prove that whatever the length of the initial route, the length of the reduced route is bounded by a constant that only depends on the structure of the environment.
Resumo:
In an earlier paper (Part I) we described the construction of Hermite code for multiple grey-level pictures using the concepts of vector spaces over Galois Fields. In this paper a new algebra is worked out for Hermite codes to devise algorithms for various transformations such as translation, reflection, rotation, expansion and replication of the original picture. Also other operations such as concatenation, complementation, superposition, Jordan-sum and selective segmentation are considered. It is shown that the Hermite code of a picture is very powerful and serves as a mathematical signature of the picture. The Hermite code will have extensive applications in picture processing, pattern recognition and artificial intelligence.
Resumo:
We study an abelian Chern-Simons theory on a five-dimensional manifold with boundary. We find it to be equivalent to a higher-derivative generalization of the abelian Wess-Zumino-Witten model on the boundary. It contains a U(1) current algebra with an operational extension.
Resumo:
The recent spurt of research activities in Entity-Relationship Approach to databases calls for a close scrutiny of the semantics of the underlying Entity-Relationship models, data manipulation languages, data definition languages, etc. For reasons well known, it is very desirable and sometimes imperative to give formal description of the semantics. In this paper, we consider a specific ER model, the generalized Entity-Relationship model (without attributes on relationships) and give denotational semantics for the model as well as a simple ER algebra based on the model. Our formalism is based on the Vienna Development Method—the meta language (VDM). We also discuss the salient features of the given semantics in detail and suggest directions for further work.
Resumo:
Let D denote the open unit disk in C centered at 0. Let H-R(infinity) denote the set of all bounded and holomorphic functions defined in D that also satisfy f(z) = <(f <(z)over bar>)over bar> for all z is an element of D. It is shown that H-R(infinity) is a coherent ring.
Resumo:
We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real Linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of 'multiplying' two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed as a generalization of that for SU(2), and the specifically new features are brought out. Application to the dynamics of three-level systems is outlined.
Resumo:
Numerical Linear Algebra (NLA) kernels are at the heart of all computational problems. These kernels require hardware acceleration for increased throughput. NLA Solvers for dense and sparse matrices differ in the way the matrices are stored and operated upon although they exhibit similar computational properties. While ASIC solutions for NLA Solvers can deliver high performance, they are not scalable, and hence are not commercially viable. In this paper, we show how NLA kernels can be accelerated on REDEFINE, a scalable runtime reconfigurable hardware platform. Compared to a software implementation, Direct Solver (Modified Faddeev's algorithm) on REDEFINE shows a 29X improvement on an average and Iterative Solver (Conjugate Gradient algorithm) shows a 15-20% improvement. We further show that solution on REDEFINE is scalable over larger problem sizes without any notable degradation in performance.
Resumo:
We propose a novel method of constructing Dispersion Matrices (DM) for Coherent Space-Time Shift Keying (CSTSK) relying on arbitrary PSK signal sets by exploiting codes from division algebras. We show that classic codes from Cyclic Division Algebras (CDA) may be interpreted as DMs conceived for PSK signal sets. Hence various benefits of CDA codes such as their ability to achieve full diversity are inherited by CSTSK. We demonstrate that the proposed CDA based DMs are capable of achieving a lower symbol error ratio than the existing DMs generated using the capacity as their optimization objective function for both perfect and imperfect channel estimation.
Resumo:
We prove that given a Hecke-Maass form f for SL(2, Z) and a sufficiently large prime q, there exists a primitive Dirichlet character chi of conductor q such that the L-values L(1/2, f circle times chi) and L(1/2, chi) do not vanish.