956 resultados para Health Infrastructure
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods: Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results: The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e. g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions: A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, Pós-Graduação em Geografia, 2016.
Resumo:
Walking is the most common form of moderate‐intensity physical activity among adults, is widely accessible and especially appealing to obese people. Most often policy makers are interested in valuing the effect on walking of changes in some characteristics of a neighbourhood, the demand response for walking, of infrastructure changes. A positive demand response to improvements in the walking environment could help meet the public health target of 150 minutes of at least moderate‐intensity physical activity per week. We model walking in an individual’s local neighbourhood as a ‘weak complement’ to the characteristics of the neighbourhood itself. Walking is affected by neighbourhood
characteristics, substitutes, and individual’s characteristics, including their opportunity cost of time. Using compensating variation, we assess the economic benefits of walking and how walking behaviour is affected by improvements to the neighbourhood. Using a sample of 1,209 respondents surveyed over a 12 month period (Feb 2010‐Jan 2011) in East Belfast, United Kingdom, we find that a policy that increased walkability and people’s perception of access to shops and facilities would lead to an increase in walking of about 36 minutes/person/week, valued at £13.65/person/week. When focusing on inactive residents, a policy that improved the walkability of the area would lead to guidelines for physical activity being reached by only 12.8% of the population who are currently inactive. Additional interventions would therefore be needed to encourage inactive residents to
achieve the recommended levels of physical activity, as it appears that interventions that improve the walkability of an area are particularly effective in increasing walking among already active citizens, and, among the inactive ones, the best response is found among healthier, younger and wealthier citizens.
Resumo:
In this paper we investigate how attitudes to health and exercise in connection with cycling influence the estimation of values of travel time savings in different kinds of bicycle environments (mixed traffic, bicycle lane in the road way, bicycle path next to the road, and bicycle path not in connection with the road). The results, based on two Swedish stated choice studies, suggest that the values of travel time savings are lower when cycling in better conditions. Surprisingly, the respondents do not consider cycling on a path next to the road worse than cycling on a path not in connection to the road, indicating that they do not take traffic noise and air pollution into account in their decision to cycle. No difference can be found between cycling on a road way (mixed traffic) and cycling in a bicycle lane in the road way. The results also indicate that respondents that include health aspects in their choice to cycle have lower value of travel time savings for cycling than respondents that state that health aspects are of less importance, at least when cycling on a bicycle path. The appraisals of travel time savings regarding cycling also differ a lot depending on the respondents’ alternative travel mode. The individuals who stated that they will take the car if they do not cycle have a much higher valuation of travel time savings than the persons stating public transport as the main alternative to cycling.
Resumo:
Academicians and practitioners generally agree that there is a positive correlation between more and better infrastructure and economic growth. From the broader perspective of development, attempts have been made in the literature to identify the different theoretical connections and the empirical patterns that link infrastructure to productivity, on the one hand, and those that link it to social inclusion and equity, on the other hand. Infrastructure contributes to development in different ways. The capital involved is not homogeneous, nor is its effect on the distributive aspects. Water and sanitation have a particularly strong association with the health of the general population and with infant mortality, early childhood health, learning abilities and the acquisition of labour skills. With respect to transportation, the reduction of costs and travel times has a direct economic impact on economic activities of production and domestic and international distribution. That infrastructure also has a social and distributive role to play by reducing the number of fatal accidents and serious injuries in the sectors that are naturally most susceptible to them, namely, the poor. Under the broad umbrella of infrastructure, we can include a number of facilities that make possible the provision of certain services. Some of these facilities require very significant fixed capital investments; some of them are residential, while others are not necessarily. What they all have in common is the existence of networks (transportation, wiring, pipelines) and a strong convergence of physical capital and/or technology, as well as the need for major investments in periodic maintenance.
Resumo:
The use of structural health monitoring of civil structures is ever expanding and by assessing the dynamical condition of structures, informed maintenance management can be conducted at both individual and network levels. With the continued growth of information age technology, the potential arises for smart monitoring systems to be integrated with civil infrastructure to provide efficient information on the condition of a structure. The focus of this thesis is the integration of smart technology with civil infrastructure for the purposes of structural health monitoring. The technology considered in this regard are devices based on energy harvesting materials. While there has been considerable focus on the development and optimisation of such devices using steady state loading conditions, their applications for civil infrastructure are less known. Although research is still in initial stages, studies into the uses associated with such applications are very promising. Through the use of the dynamical response of structures to a variety of loading conditions, the energy harvesting outputs from such devices is established and the potential power output determined. Through a power variance output approach, damage detection of deteriorating structures using the energy harvesting devices is investigated. Further applications of the integration of energy harvesting devices with civil infrastructure investigated by this research includes the use of the power output as a indicator for control. Four approaches are undertaken to determine the potential applications arising from integrating smart technology with civil infrastructure, namely • Theoretical analysis to determine the applications of energy harvesting devices for vibration based health monitoring of civil infrastructure. • Laboratory experimentation to verify the performance of different energy harvesting configurations for civil infrastructure applications. • Scaled model testing as a method to experimentally validate the integration of the energy harvesting devices with civil infrastructure. • Full scale deployment of energy harvesting device with a bridge structure. These four approaches validate the application of energy harvesting technology with civil infrastructure from a theoretical, experimental and practical perspective.
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.
Resumo:
Monitoring urban growth and land-use change is an important issue for sustainable infrastructure planning. Rapid urban development, sprawl and increasing population pressure, particularly in developing nations, are resulting in deterioration of infrastructure facilities, loss of productive agricultural lands and open spaces, pollution, health hazards and micro-climatic changes. In addressing these issues effectively, it is crucial to collect up-to-date and accurate data and monitor the changing environment at regular intervals. This chapter discusses the role of geospatial technologies for mapping and monitoring the changing environment and urban structure, where such technologies are highly useful for sustainable infrastructure planning and provision.
Resumo:
The process of structural health monitoring (SHM) involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures and acoustic emission (AE) is one technique that is finding an increasing use. Acoustic emission waves are the stress waves generated by the mechanical deformation of materials. AE waves produced inside a structure can be recorded by means of sensors attached on the surface. Analysis of these recorded signals can locate and assess the extent of damage. This paper describes preliminary studies on the application of AE technique for health monitoring of bridge structures. Crack initiation or structural damage will result in wave propagation in solid and this can take place in various forms. Propagation of these waves is likely to be affected by the dimensions, surface properties and shape of the specimen. This, in turn, will affect source localization. Various laboratory test results will be presented on source localization, using pencil lead break tests. The results from the tests can be expected to aid in enhancement of knowledge of acoustic emission process and development of effective bridge structure diagnostics system.
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.