964 resultados para HIGH-TEMPERATURE FERROMAGNETIC SPIN SYSTEMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Examination by high temperature GC (HTGC) of the methyl esters of the so-called 'ARN' naphthenic acids from crude oils of North Sea UK, Norwegian Sea and West African oilfields revealed the distributions of resolved 4-8 ring C-80 tetra acids and trace amounts of other acids. Whilst all three oils contained apparently the same the proportions of each differed, possibly reflecting the growth tempe acids, ratures of the archaebacteria from which the acids are assumed to have originated. The structures of the 4, 5, 7 and 8 ring acids are tentatively assigned by comparison with the known 6 ring acid and related natural products and an HPLC method for the isolation of the individual acids is described. ESI-MS of individual acids isolated by preparative HPLC established the elution order of the 4-8 ring acids on the HPLC and HTGC systems and revealed the presence of previously unreported acids tentatively identified as C-81 and C-82 7 and 8 ring analogues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of different M(2+) cations on the effective magnetic anisotropy of systems composed of MFe(2)O(4) (M Fe, Co and Mn) nanoparticles was investigated. Samples were prepared by the high-temperature (538 K) solution phase reaction of Fe (acac) 3, Co (acac) 2 and Mn (acac) 2 with 1,2 octanodiol in the presence of oleic acid and oleylamine. The final particles are coated by an organic layer of oleic acid that prevents agglomeration. Transmission electron microscopy (TEM) images show that particles present near spherical form and a narrow grain size distribution, with mean diameters in the range of 4.5 - 7.6 nm. Powder samples were analyzed by ac susceptibility and Mossbauer measurements, and K(eff) for all samples was evaluated using both techniques, showing a strong dependence on the nature of the divalent cation. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hysteretic behavior of mechanically alloyed nanocomposites FeCo + MnO was studied at high temperatures. These composites present an unusual high and thermally stable coercivity, compared to FeCo milled at equal conditions. Coercivity enhancement was observed in hysteresis loops obtained between room temperature and 750 K. It is attributed to the isolation of the FeCo ferromagnetic particles by the paramagnetic MnO (T(N) = 120 K). The M(rev)(M(irr))(H) curves are clearly linear for the composite, indicating that coherent rotation is the reversal mechanism in these materials. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of La(2-x)Ce(x)Cu(1-y)Zn(y)O(4) perovskites as catalysts for the high temperature water-gas shift reaction (H T-W G S R) was investigated. The catalysts were characterized by EDS, XRD, BET surface area, TPR, and XANES. The results showed that all the perovskites exhibited the La(2)CuO(4) orthorhombic structure, so the Pechini method is suitable for the preparation of pure perovskite. However, the La(1.90)Ce(0.10)CuO(4) perovskite alone, when calcined at 350/700 degrees C, also showed a (La(0.935)Ce(0.065))(2)CuO(4) perovskite with tetragonal structure, which produced a surface area higher than the other perovskites. The perovskites that exhibited the best catalytic performance were those calcined at 350/700 degrees C and, among these, La(1.90)Ce(0.10)CuO(4) was outstanding, probably because of the high surface area associated with the presence of the (La(0.935)Ce(0.065))(2)CuO(4) perovskite with tetragonal structure and orthorhombic La(2)CuO(4) phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solar thermal system with seasonal borehole storage for heating of a residential area in Anneberg, Sweden, approximately 10 km north of Stockholm, has been in operation since late 2002. Originally, the project was part of the EU THERMIE project “Large-scale Solar Heating Systems for Housing Developments” (REB/0061/97) and was the first solar heating plant in Europe with borehole storage in rock not utilizing a heat pump. Earlier evaluations of the system show lower performance than the preliminary simulation study, with residents complaining of a high use of electricity for domestic hot water (DHW) preparation and auxiliary heating. One explanation mentioned in the earlier evaluations is that the borehole storage had not yet reached “steady state” temperatures at the time of evaluation. Many years have passed since then and this paper presents results from a new evaluation. The main aim of this work is to evaluate the current performance of the system based on several key figures, as well as on system function based on available measurement data. The analysis show that though the borehole storage now has reached a quasi-steady state and operates as intended, the auxiliary electricity consumption is much higher than the original design values largely due to high losses in the distribution network, higher heat loads as well as lower solar gains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the area of nanotechnology continues to grow, the development of new nanomaterials with interesting physical and electronic properties and improved characterization techniques are several areas of research that will be remain vital for continued improvement of devices and the understanding in nanoscale phenomenon. In this dissertation, the chemical vapor deposition synthesis of rare earth (RE) compounds is described in detail. In general, the procedure involves the vaporization of a REClx (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho) in the presence of hydride phase precursors such as decaborane and ammonia at high temperatures and low pressures. The vapor-liquid-solid mechanism was used in combination with the chemical vapor deposition process to synthesize single crystalline rare earth hexaboride nanostructures. The crystallographic orientation of as-synthesized rare earth hexaboride nanostructures and gadolinium nitride thin films was controlled by judicious choice of specific growth substrates and modeled by analyzing x-ray diffraction powder patterns and crystallographic models. The rare earth hexaboride nanostructures were then implemented into two existing technologies to enhance their characterization capabilities. First, the rare earth hexaboride nanowires were used as a test material for the development of a TEM based local electrode atom probe tomography (LEAP) technique. This technique provided some of the first quantitative compositional information of the rare earth hexaboride systems. Second, due to the rigidity and excellent conductivity of the rare earth hexaborides, nanostructures were grown onto tungsten wires for the development of robust, oxidation resistant nanomanipulator electronic probes for semiconductor device failure analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature dependent single-crystal X-ray data were collected on amicite K4Na4(Al8Si8O32)·11H2O from Kola Peninsula (Russia) in steps of 25 °C from room temperature to 175 °C and of 50 °C up to 425 °C. At room temperature amicite has space group I2 with a = 10.2112(1), b = 10.4154(1), c = 9.8802(1) Å, β = 88.458(1)°, V = 1050.416(18) Å3. Its crystal structure is based on a Si–Al ordered tetrahedral framework of the GIS type with two systems of eight-membered channels running along the a and c axes. Extraframework K and Na cations are ordered at two fully occupied sites. Above 75 °C amicite was found to partly dehydrate into two separate but coherently intergrown phases, both of space group I2/a, one K-rich ∼K8(Al8Si8O32) ·4H2O (at 75 °C: a = 10.038(2), b = 9.6805(19), c = 9.843(2) Å, β = 89.93(3)°, V = 956.5(3) Å3) and the other Na-rich ∼Na8(Al8Si8O32)·2H2O (at 75 °C: a = 9.759(2), b = 8.9078(18), c = 9.5270(19) Å, β = 89.98(3)°, V = 828.2(3) Å3). Upon further heating above 75 °C the Na- and K-phases lost remaining H2O with only minor influence on the framework structure and became anhydrous at 175 °C and 375 °C, respectively. The two anhydrous phases persisted up to 425 °C. Backscattered electron images of a heated crystal displayed lamellar intergrowth of the K- and Na-rich phases. Exposed to ambient humid conditions K- and Na-rich phases rehydrated and conjoined to the original one phase I2 structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using quantum Monte Carlo, we study the nonequilibrium transport of magnetization in large open strongly correlated quantum spin-12 systems driven by purely dissipative processes that conserve the uniform or staggered magnetization, disregarding unitary Hamiltonian dynamics. We prepare both a low-temperature Heisenberg ferromagnet and an antiferromagnet in two parts of the system that are initially isolated from each other. We then bring the two subsystems in contact and study their real-time dissipative dynamics for different geometries. The flow of the uniform or staggered magnetization from one part of the system to the other is described by a diffusion equation that can be derived analytically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plane strain simple shearing of norcamphor (C7H10O) in a see-through deformation rig to a shear strain of γ = 10.5 at a homologous temperature of Th = 0.81 yields a microfabric similar to that of quartz in amphibolite facies mylonite. Synkinematic analysis of the norcamphor microfabric reveals that the development of a steady-state texture is linked to changes in the relative activities of several grain-scale mechanisms. Three stages of textural and microstructural evolution are distinguished: (1) rotation and shearing of the intracrystalline glide planes are accommodated by localized deformation along three sets of anastomozing microshears. A symmetrical c-axis girdle reflects localized pure shear extension along the main microshear set (Sa) oblique to the bulk shear zone boundary (abbreviated as SZB); (2) progressive rotation of the microshears into parallelism with the SZB increases the component of simple shear on the Sa microshears. Grain-boundary migration recrystallization favours the survival of grains with slip systems oriented for easy glide. This is associated with a textural transition towards two stable c-axis point maxima whose skeletal outline is oblique with respect to the Sa microshears and the SZB; and (3) at high shear strains (γ > 8), the microstructure, texture and mechanism assemblage are strain invariant, but strain continues to partition into rotating sets of microshears. Steady state is therefore a dynamic, heterogeneous condition involving the cyclic nucleation, growth and consumption of grains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and abundance on earth. The proposed system enables an enormous thermal energy storage density of ~1 MWh/m3, which is 10e20 times higher than that of lead-acid batteries, 2e6 times than that of Li-ion batteries and 5e10 times than that of the current state of the art LHTES systems utilized in CSP (concentrated solar power) applications. The discharge efficiency of the system is ultimately determined by the TPV converter, which theoretically can exceed 50%. However, realistic discharge efficiencies utilizing single junction TPV cells are in the range of 20e45%, depending on the semiconductor bandgap and quality, and the photon recycling efficiency. This concept has the potential to achieve output electric energy densities in the range of 200-450 kWhe/m3, which is comparable to the best performing state of the art Lithium-ion batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are several classes of homogeneous Fermi systems that are characterized by the topology of the energy spectrum of fermionic quasiparticles: (i) gapless systems with a Fermi surface, (ii) systems with a gap in their spectrum, (iii) gapless systems with topologically stable point nodes (Fermi points), and (iv) gapless systems with topologically unstable lines of nodes (Fermi lines). Superfluid 3He-A and electroweak vacuum belong to the universality class 3. The fermionic quasiparticles (particles) in this class are chiral: they are left-handed or right-handed. The collective bosonic modes of systems of class 3 are the effective gauge and gravitational fields. The great advantage of superfluid 3He-A is that we can perform experiments by using this condensed matter and thereby simulate many phenomena in high energy physics, including axial anomaly, baryoproduction, and magnetogenesis. 3He-A textures induce a nontrivial effective metrics of the space, where the free quasiparticles move along geodesics. With 3He-A one can simulate event horizons, Hawking radiation, rotating vacuum, etc. High-temperature superconductors are believed to belong to class 4. They have gapless fermionic quasiparticles with a “relativistic” spectrum close to gap nodes, which allows application of ideas developed for superfluid 3He-A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the hardwired implementation of algorithms for Monte Carlo simulations of a large class of spin models. We have implemented these algorithms as VHDL codes and we have mapped them onto a dedicated processor based on a large FPGA device. The measured performance on one such processor is comparable to O(100) carefully programmed high-end PCs: it turns out to be even better for some selected spin models. We describe here codes that we are currently executing on the IANUS massively parallel FPGA-based system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Final report for period February 1976-December 1978."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.