47 resultados para HEPCIDIN
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hepcidin is a highly conserved disulfide-bonded peptide that plays a central role in iron homeostasis. During systemic inflammation, hepcidin up-regulation is responsible for hypoferremia. This study aimed to analyze the influence of the inflammatory process induced by complete Freund's adjuvant (CFA) or lipopolysaccharide (LPS) on the liver expression of hepcidin mRNA transcripts and plasma iron concentration of sheep. The expression levels of hepcidin transcripts were up-regulated after CFA or LPS. Hypoferremic response was observed at 12 h (15.46 +/- 6.05 mu mol/L) or 6 h (14.59 +/- 4.38 mu mol/L) and iron reached its lowest level at 96 h (3.08 +/- 1.18 mu mol/L) or 16 h (4.06 +/- 1.58 mu mol/L) after CFA administration or LPS infusion, respectively. This study demonstrated that the iron regulatory hormone hepcidin was up-regulated in sheep liver in response to systemic inflammation. These findings extend our knowledge on the relationship between the systemic inflammatory response, hepcidin and iron, and provide a starting point for additional studies on iron metabolism and the inflammatory process in sheep. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Iron is essential for all organisms and its availability can control the growth of microorganisms; therefore, we examined the role of iron metabolism in multibacillary (MB) leprosy, focusing on the involvement of hepcidin. Erythrograms, iron metabolism parameters, pro-inflammatory cytokines and urinary hepcidin levels were evaluated in patients with MB and matched control subjects. Hepcidin expression in MB lesions was evaluated by quantitative polymerase chain reaction. The expression of ferroportin and hepcidin was evaluated by immunofluorescence in paucibacillary and MB lesions. Analysis of hepcidin protein levels in urine and of hepcidin mRNA and protein levels in leprosy lesions and skin biopsies from healthy control subjects showed elevated hepcidin levels in MB patients. Decreases in haematologic parameters and total iron binding capacity were observed in patients with MB leprosy. Moreover, interleukin-1 beta, ferritin, soluble transferrin receptor and soluble transferrin receptor/log ferritin index values were increased in leprosy patients. Hepcidin was elevated in lepromatous lesions, whereas ferroportin was more abundant in tuberculoid lesions. In addition, hepcidin and ferroportin were not colocalised in the biopsies from leprosy lesions. Anaemia was not commonly observed in patients with MB; however, the observed changes in haematologic parameters indicating altered iron metabolism appeared to result from a mixture of anaemia of inflammation and iron deficiency. Thus, iron sequestration inside host cells might play a role in leprosy by providing an optimal environment for the bacillus.
Resumo:
We previously reported the disruption of the murine gene encoding the transcription factor USF2 and its consequences on glucose-dependent gene regulation in the liver. We report here a peculiar phenotype of Usf2−/− mice that progressively develop multivisceral iron overload; plasma iron overcomes transferrin binding capacity, and nontransferrin-bound iron accumulates in various tissues including pancreas and heart. In contrast, the splenic iron content is strikingly lower in knockout animals than in controls. To identify genes that may account for the abnormalities of iron homeostasis in Usf2−/− mice, we used suppressive subtractive hybridization between livers from Usf2−/− and wild-type mice. We isolated a cDNA encoding a peptide, hepcidin (also referred to as LEAP-1, for liver-expressed antimicrobial peptide), that was very recently purified from human blood ultrafiltrate and from urine as a disulfide-bonded peptide exhibiting antimicrobial activity. Accumulation of iron in the liver has been recently reported to up-regulate hepcidin expression, whereas our data clearly show that a complete defect in hepcidin expression is responsible for progressive tissue iron overload. The striking similarity of the alterations in iron metabolism between HFE knockout mice, a murine model of hereditary hemochromatosis, and the Usf2−/− hepcidin-deficient mice suggests that hepcidin may function in the same regulatory pathway as HFE. We propose that hepcidin acts as a signaling molecule that is required in conjunction with HFE to regulate both intestinal iron absorption and iron storage in macrophages.
Resumo:
Hepcidin is a liver-expressed antimicrobial and iron regulatory peptide. A number of studies have indicated that hepcidin is important for the correct regulation of body iron homeostasis. The aims of this study were to analyse the expression, trafficking and regulation of human hepcidin in an in vitro cell culture system. Human hepcidin was transfected into human embryonic kidney cells. Immunofluorescence and confocal microscopy analysis revealed that recombinant hepcidin localised to the Golgi complex. Recombinant hepcidin is secreted from the cell within 1 h of its synthesis. Recombinant hepcidin was purified from the cell culture medium using ion-exchange and metal-affinity chromatography and was active in antimicrobial assays. Amino-terminal sequence analysis of the secreted peptide revealed that it was the mature 25 amino acid form of hepcidin. Our results show that recombinant myc-His tagged human hepcidin was expressed, processed and secreted correctly and biologically active in antimicrobial assays. (C) 2005 Elsevier SAS. All rights reserved.
Resumo:
Hepcidin is the key regulator of systemic iron homeostasis. The iron-sensing mechanisms and the role of intracellular iron in modulating hepatic hepcidin secretion are unclear. Therefore, we created a novel cell line, recombinant-TfR1 HepG2,expressing iron-response-element-independent TFRC mRNA to promote cellular iron overload and examined the effect of excess holotransferrin (5 g/L) on cell-surface TfR1, iron content, hepcidin secretion and mRNA expressions of TFRC, HAMP, SLC40A1,HFE and TFR2. Results showed that the recombinant cells exceeded levels of cell surface TfR1 in wild-type cells under basal (2.8-fold; p<0.03) and holotransferrin supplemented conditions for 24 h and 48 h (4.4- and 7.5-fold, respectively; p<0.01). Also, these cells showed higher intracellular iron content than wild-type cells under basal (3-fold; p<0.03) and holotransferrin-supplemented conditions (6.6-fold at 4 h; p<0.01). However, hepcidin secretion was not higher than wild-type cells. Moreover, holotransferrin treatment to recombinant cells did not elevate HAMP responses compared to untreated or wild-type cells. In conclusion, increased intracellular iron content in recombinant cells did not increase hepcidin responses compared to wild-type cells, resembling hemochromatosis. Furthermore, TFR2 expression altered within 4 h of treatment, while HFE expression altered later at 24 h and 48 h, suggesting that TFR2 may function prior to HFE in HAMP regulation.
Resumo:
Background and objectives: Significantly elevated serum ferritin levels are associated with both iron overload and some inflammatory conditions. Hepcidin is a protein that interferes with iron absorption in inflammatory states and acts as an acute-phase reactant. Materials and methods: Here we report the case a 33-year-old patient who presented with high fever, skin lesions and arthralgia lasting for 2 weeks. His ferritin level was 13,800 µg/l and his hepcidin level was 61 ng/dl. Results: The final diagnosis was adult onset Still's disease. The condition evolved satisfactorily with steroid treatment, but after several weeks the patient presented with an unexpected recurrence. Conclusions: Hepcidin is a good inflammatory marker that could be useful in the differential diagnosis of hyperferritinaemia.
Resumo:
Obesity and Type 2 diabetes mellitus share a strong pro-inflammatory profile. It has been observed that iron is a risk factor in the development of type 2 diabetes. The aim of this study was to evaluate the relationship between iron nutritional status and inflammation with the risk of type 2 diabetes development in obese subjects. We studied 30 obese men with type 2 diabetes (OBDM); 30 obese subjects without diabetes (OB) and 30 healthy subjects (Cn). We isolated peripheral mononuclear cells (PMCs) and challenged them with high Fe concentrations. Total mRNA was isolated and relative abundance of TNF-αIL-6 and hepcidin were determined by qPCR. Iron status, biochemical, inflammatory and oxidative stress parameters were also characterized. OBDM and OB patients showed increased hsCRP levels compared to the Cn group. OBDM subjects showed higher levels of ferritin than the Cn group. TNF-α and IL-6 mRNA relative abundances were increased in OBDM PMCs treated with high/Fe. Hepcidin mRNA was increased with basal and high iron concentration. We found that the highest quartile of ferritin was associated with an increased risk of type 2 diabetes when it was adjusted to BMI and HOMA-IR; this association was independent of the inflammatory status. The highest level of hepcidin gene expression also showed a trend of increased risk of diabetes, however it was not significant. Levels of hsCRP over 2 mg/L showed a significant trend of increasing the risk of diabetes. In conclusion, iron may stimulate the expression of pro-inflammatory genes (TNF-α and IL-6), and both hepcidin and ferritin gene expression levels could be a risk factor for the development of type 2 diabetes. Subjects that have an increased cardiovascular risk also have a major risk to develop type 2 diabetes, which is independent of the BMI and insulin resistance state.
Resumo:
A anemia por deficiência de ferro caracteriza-se como o mais prevalente problema nutricional em todo o mundo. Nesta revisão reuniu-se informações a respeito do metabolismo da hepcidina, avaliando-se seu valor como parâmetro bioquímico na anemia por deficiência de ferro. Realizou-se um levantamento bibliográfico nas bases de dados PUBMED e LILACS, período 2006-2010, referentes à hepcidina como um biomarcador para a regulação do metabolismo do ferro. Foram localizados 35 estudos publicados em revistas internacionais e um estudo sobre o assunto em revista nacional. A produção de hepcidina é regulada homeostaticamente pela anemia e hipóxia. Quando a oferta de oxigênio está inadequada ocorre diminuição do nível de hepcidina. Consequentemente, maior quantidade de ferro proveniente da dieta e dos estoques dos macrófagos e hepatócitos se tornam disponíveis. A hepcidina possui a função de se ligar à ferroportina, regulando a liberação do ferro para o plasma. Quando as concentrações de hepcidina estão baixas, as moléculas de ferroportina são expostas na membrana plasmática e liberam o ferro. Quando os níveis de hepcidina aumentam, a hepcidina liga-se às moléculas de ferroportina induzindo sua internalização e degradação, e o ferro liberado diminui progressivamente. Aparentemente o desenvolvimento do diagnóstico e terapia da anemia baseados no bioindicador hepcidina pode oferecer uma abordagem mais efetiva. Estudos epidemiológicos são necessários para comprovar o valor da hepcidina no diagnóstico diferencial das anemias, incluindo protocolos de amostragem para análise, com padronização similar às utilizadas em outras avaliações bioquímicas, e estabelecimento de pontos de corte para a expressão urinária e plasmática desse peptídeo
Resumo:
Background: p.C282Y mutation and rare variants in the HFE gene have been associated with hereditary hemochromatosis (HH). HH is also caused by mutations in other genes, such as the hemojuvelin (HJV), hepcidin (HAMP), transferrin receptor 2 (TFR2) and ferroportin (SLC40A1). The low rate homozygous p.C282Y mutation in Brazil is suggestive that mutations in non-HFE genes may be linked to HH phenotype. Aim: To screen exon-by-exon DNA sequences of HFE, HJV, HAMP, TFR2 and SLC40A1 genes to characterize the molecular basis of HH in a sample of the Brazilian population. Materials and methods: Fifty-one patients with primary iron overload (transferrin saturation >= 50% in females and >= 60% in males) were selected. Subsequent bidirectional DNA sequencing of HFE, HJV, HAMP, TFR2 and SLC40A1 exons was performed. Results: Thirty-seven (72.5%) out of the 51 patients presented at least one HFE mutation. The most frequent genotype associated with HH was the homozygous p.C282Y mutation (n = 11, 21.6%). In addition, heterozygous HFE p.S65C mutation was found in combination with p.H63D in two patients and homozygous HFE p.H63D was found in two patients as well. Sequencing in the HJV and HAMP genes revealed HJV p.E302K, HJV p.A310G, HJV p.G320V and HAMP p.R59G alterations. Molecular and clinical diagnosis of juvenile hemochromatosis (homozygous form for the HJV p.G320V) was described for the first time in Brazil. Three TFR2 polymorphisms (p.A75V, p.A617A and p.R752H) and six SLC40A1 polymorphisms (rs13008848, rs11568351, rs11568345, rs11568344, rs2304704, rs11568346) and the novel mutation SLC40A1 p.G204S were also found. Conclusions: The HE p.C282Y in homozygosity or in heterozygosity with p.H63D was the most frequent mutation associated with HH in this sample. The HJV p.E302K and HAMP p.R59G variants, and the novel SLC40A1 p.G2045 mutation may also be linked to primary iron overload but their role in the pathophysiology of HH remain to be elucidated. (C) 2011 Elsevier Inc. All rights reserved.