898 resultados para Ground transportation
Resumo:
Traffic demand increases are pushing aging ground transportation infrastructures to their theoretical capacity. The result of this demand is traffic bottlenecks that are a major cause of delay on urban freeways. In addition, the queues associated with those bottlenecks increase the probability of a crash while adversely affecting environmental measures such as emissions and fuel consumption. With limited resources available for network expansion, traffic professionals have developed active traffic management systems (ATMS) in an attempt to mitigate the negative consequences of traffic bottlenecks. Among these ATMS strategies, variable speed limits (VSL) and ramp metering (RM) have been gaining international interests for their potential to improve safety, mobility, and environmental measures at freeway bottlenecks. Though previous studies have shown the tremendous potential of variable speed limit (VSL) and VSL paired with ramp metering (VSLRM) control, little guidance has been developed to assist decision makers in the planning phase of a congestion mitigation project that is considering VSL or VSLRM control. To address this need, this study has developed a comprehensive decision/deployment support tool for the application of VSL and VSLRM control in recurrently congested environments. The decision tool will assist practitioners in deciding the most appropriate control strategy at a candidate site, which candidate sites have the most potential to benefit from the suggested control strategy, and how to most effectively design the field deployment of the suggested control strategy at each implementation site. To do so, the tool is comprised of three key modules, (1) Decision Module, (2) Benefits Module, and (3) Deployment Guidelines Module. Each module uses commonly known traffic flow and geometric parameters as inputs to statistical models and empirically based procedures to provide guidance on the application of VSL and VSLRM at each candidate site. These models and procedures were developed from the outputs of simulated experiments, calibrated with field data. To demonstrate the application of the tool, a list of real-world candidate sites were selected from the Maryland State Highway Administration Mobility Report. Here, field data from each candidate site was input into the tool to illustrate the step-by-step process required for efficient planning of VSL or VSLRM control. The output of the tool includes the suggested control system at each site, a ranking of the sites based on the expected benefit-to-cost ratio, and guidelines on how to deploy the VSL signs, ramp meters, and detectors at the deployment site(s). This research has the potential to assist traffic engineers in the planning of VSL and VSLRM control, thus enhancing the procedure for allocating limited resources for mobility and safety improvements on highways plagued by recurrent congestion.
Resumo:
"100-78."
Resumo:
Background: The transport of children in ground ambulances is a rarely studied topic worldwide. The ambulance vehicle is a unique and complex environment with particular challenges for the safe, correct and effective transportation of patients. Unlike the well developed and readily available guidelines on the safe transportation of a child in motor vehicles, there is a lack on consistent specifications for transporting children in ambulances. Nurses are called daily to transfer children to hospitals or other care centers, so safe transport practices should be a major concern. Purpose: to know which are the safety precautions and specific measures used in the transport of children in ground ambulances by nurses and firefighters and to identify what knowledge these professionals had about safe modes of children transportation in ground ambulances. Methods: In this context, an exploratory - descriptive study and quantitative analysis was conducted. A questionnaire was completed by 135 nurses and firefighters / ambulance crew based on 4 possible children transport scenarios proposed by the NHTSA (National Highway Traffic Safety Administration) and covered 5 different children´s age groups (new born children, 1 to 12 months; 1 to 3 years old; 4 to 7 years old and 8 to 12 years old). Results: The main results showed a variety of safety measures used by the professionals and a significant difference between their actual mode of transportation and the mode they consider to be the ideal considering security goals. In addition, findings showed that achieved scores related to what ambulance crews do in the considered scenarios reflect mostly satisfactory levels of transportation rather than optimum levels of safety, according to NHTSA recommendations. Variables as gender, educational qualifications, occupational group and local where professionals work seem to influence the transport options. Female professionals and nurses from pediatric units appear to do a safer transportation of children in ground ambulances than other professionals. Conclusion: Several professionals refereed unawareness of the safest transportation options for children in ambulances and did not to know the existence of specific recommendations for this type of transportation. The dispersion of the results suggests the need for investment in professional training and further regulation for this type of transportation.
Resumo:
Background: The transport of children in ground ambulances is a rarely studied topic worldwide. The ambulance vehicle is a unique and complex environment with particular challenges for the safe, correct and effective transportation of patients. Unlike the well developed and readily available guidelines on the safe transportation of a child in motor vehicles, there is a lack on consistent specifications for transporting children in ambulances. Nurses are called daily to transfer children to hospitals or other care centers, so safe transport practices should be a major concern. Purpose: to know which are the safety precautions and specific measures used in the transport of children in ground ambulances by nurses and firefighters and to identify what knowledge these professionals had about safe modes of children transportation in ground ambulances. Methods: In this context, an exploratory - descriptive study and quantitative analysis was conducted. A questionnaire was completed by 135 nurses and firefighters / ambulance crew based on 4 possible children transport scenarios proposed by the NHTSA (National Highway Traffic Safety Administration) and covered 5 different children´s age groups (new born children, 1 to 12 months; 1 to 3 years old; 4 to 7 years old and 8 to 12 years old). Results: The main results showed a variety of safety measures used by the professionals and a significant difference between their actual mode of transportation and the mode they consider to be the ideal considering security goals. In addition, findings showed that achieved scores related to what ambulance crews do in the considered scenarios reflect mostly satisfactory levels of transportation rather than optimum levels of safety, according to NHTSA recommendations. Variables as gender, educational qualifications, occupational group and local where professionals work seem to influence the transport options. Female professionals and nurses from pediatric units appear to do a safer transportation of children in ground ambulances than other professionals. Conclusion: Several professionals refereed unawareness of the safest transportation options for children in ambulances and did not to know the existence of specific recommendations for this type of transportation. The dispersion of the results suggests the need for investment in professional training and further regulation for this type of transportation.
Resumo:
Summary The transport of children in ground ambulances is a rarely studied topic worldwide. The ambulance vehicle is a unique environment with particular challenges for the safe, correct and effective transportation of patients. Unlike the well developed and available guidelines on the transportation of children in motor vehicles, there is a lack on specifications for transporting children in ambulances. Nurses are called daily to transfer children to hospitals or other care centres, so safe transport practices should be a major concern. Methods An exploratory - descriptive study and quantitative analysis was conducted. The safety measures used by the professionals in the transportation of children in ambulances were analysed based on the NHTSA (National Highway Traffic Safety Administration) recommendations. A questionnaire was applied to 135 nurses and firefighters/crew of Portuguese ambulances using 4 possible transport situations and covering 5 paediatric age groups. Results There are a variety of safety measures used by professionals and a significant difference between actual mode of transportation and the mode they consider to be the ideal. In addition, findings showed that scores related to what ambulance crews do in these scenarios reflect most satisfactory levels of transportation rather than the optimum levels, according to NHTSA recommendations. Variables as gender, educational qualifications, occupational group and local where professionals work seem to influence the transport options. Female professionals and pediatric nurses do a safer transportation of children in ambulances than other professionals. Conclusion The results suggest the need for investment in professional training and further regulation for this type of transportation.
Resumo:
When concrete deterioration begins to occur in highway pavement, repairs become necessary to assure the rider safety, extend its useful life and restore its riding qualities. One rehabilitation technique used to restore the pavement to acceptable highway standards is to apply a thin portland cement concrete (PCC) overlay to the existing pavement. First, any necessary repairs are made to the existing pavement, the surface is then prepared, and the PCC overlay is applied. Brice Petrides-Donohue, Inc. (Donohue) was retained by the Iowa Department of Transportation (IDOT) to evaluate the present condition with respect to debonding of the PCC overlay at fifteen sites on Interstate 80 and State Highway 141 throughout the State of Iowa. This was accomplished by conducting an infrared thermographic and ground penetrating radar survey of these sites which were selected by the Iowa Department of Transportation. The fifteen selected sites were all two lanes wide and one-tenth of a mile long, for a total of three lane miles or 190,080 square feet. The selected sites are as follows: On Interstate 80 Eastbound, from milepost 35.25 to 35.35, milepost 36.00 to 36.10, milepost 37.00 to 37.10, milepost 38.00 to 38.10 and milepost 39.00 to 39.10, on State Highway 141 from milepost 134.00 to 134.10, milepost 134.90 to milepost 135.00, milepost 135.90 to 136.00, milepost 137.00 to 137.10 and milepost 138.00 to 138.10, and on Interstate 80 Westbound from milepost 184.00 to 184.10, milepost 185.00 to 185.10, milepost 186.00 to 186.10, milepost 187.00 to 187.10, and from milepost 188.00 to 188.10.
Resumo:
Leachate from an untreated landfill or landfill with damaged liners will cause the pollution of soil and ground water. Here an attempt was made to generate knowledge on concentrations of all relevant pollutants in soil due to municipal solid waste landfill leachate and its migration through soil and also to study the effect of leachate on the engineering properties of soil. To identify the pollutants in soil due to the leachate generated from municipal solid waste landfill site, a case study on an unlined municipal solid waste landfill at Kalamassery has been done. Soil samples as well as water samples were collected from the site and analysed to identify the pollutants and its effect on soil characteristics. The major chemicals in the soil were identified as Ammonia, Chloride, Nitrate, Iron, Nickel, Chromium, Cadmium etc.. Engineering properties of field soil samples show that the chemicals from the leachate of landfill may have effect on the engineering properties of soil. Laboratory experiments were formulated to model the field around an unlined MSW landfill using two different soils subjected to a synthetic leachate. The Maximum change in chemical concentration and engineering property was observed on soil samples at a radial distance of 0.2 m and at a depth of 0.3 m. The pollutant (chemicals) transport pattern through the soil was also studied using synthetic leachate. To establish the effect of pollutants (chemicals) on engineering properties of soil, experiments were conducted on two types soils treated with the synthetic chemicals at four different concentrations. Analyses were conducted after maturing periods of 7, 50, 100 and 150 days. Test soils treated with maximum chemical concentration and matured for 150 days were showing major change in the properties. To visualize the flow of pollutants through soil in a broader sense, the transportation of pollutants through soil was modeled using software ‘Visual MODFLOW’. The actual field data collected for the case study was used to calibrate the modelling and thus simulated the flow pattern of the pollutants through soil around Kalamassery municipal solid waste landfill for an extent of 4 km2. Flow was analysed for a time span of 30 years in which the landfill was closed after 20 years. The concentration of leachate beneath the landfill was observed to be reduced considerably within one year after closure of landfill and within 8 years, it gets lowered to a negligible level. As an environmensstal management measure to control the pollution through leachate, permeable reactive barriers are used as an emerging technology. Here the suitability of locally available materials like coir pith, rice husk and sugar cane bagasse were investigated as reactive media in permeable reactive barrier. The test results illustrates that, among these, coir pith was showing better performance with maximum percentage reduction in concentration of the filtrate. All these three agricultural wastes can be effectively utilized as a reactive material. This research establishes the influence of leachate of municipal solid waste landfill on the engineering properties of soil. The factors such as type of the soil, composition of leachate, infiltration rate, aquifers, ground water table etc., will have a major role on the area of influence zone of the pollutants in a landfill. Software models of the landfill area can be used to predict the extent and the time span of pollution of a landfill, by inputting the accurate field parameters and leachate characteristics. The present study throws light on the role of agro waste materials on the reduction of the pollution in leachate and thus prevents the groundwater and soil from contamination
Resumo:
Transportation Department, Office of University Research, Washington, D.C.
Resumo:
"Task 9R99-01-005-02, contract DA44-177-TC-776."
Resumo:
"Report no. FHWA-TS-80-202."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The standard highway assignment model in the Florida Standard Urban Transportation Modeling Structure (FSUTMS) is based on the equilibrium traffic assignment method. This method involves running several iterations of all-or-nothing capacity-restraint assignment with an adjustment of travel time to reflect delays encountered in the associated iteration. The iterative link time adjustment process is accomplished through the Bureau of Public Roads (BPR) volume-delay equation. Since FSUTMS' traffic assignment procedure outputs daily volumes, and the input capacities are given in hourly volumes, it is necessary to convert the hourly capacities to their daily equivalents when computing the volume-to-capacity ratios used in the BPR function. The conversion is accomplished by dividing the hourly capacity by a factor called the peak-to-daily ratio, or referred to as CONFAC in FSUTMS. The ratio is computed as the highest hourly volume of a day divided by the corresponding total daily volume. ^ While several studies have indicated that CONFAC is a decreasing function of the level of congestion, a constant value is used for each facility type in the current version of FSUTMS. This ignores the different congestion level associated with each roadway and is believed to be one of the culprits of traffic assignment errors. Traffic counts data from across the state of Florida were used to calibrate CONFACs as a function of a congestion measure using the weighted least squares method. The calibrated functions were then implemented in FSUTMS through a procedure that takes advantage of the iterative nature of FSUTMS' equilibrium assignment method. ^ The assignment results based on constant and variable CONFACs were then compared against the ground counts for three selected networks. It was found that the accuracy from the two assignments was not significantly different, that the hypothesized improvement in assignment results from the variable CONFAC model was not empirically evident. It was recognized that many other factors beyond the scope and control of this study could contribute to this finding. It was recommended that further studies focus on the use of the variable CONFAC model with recalibrated parameters for the BPR function and/or with other forms of volume-delay functions. ^
Resumo:
Ground delay programs typically involve the delaying of aircraft that are departing from origin airports within some set distance of a capacity constrained destination airport. Long haul flights are not delayed in this way. A trade-off exists when fixing the distance parameter: increasing the ‘scope’ distributes delay among more aircraft and may reduce airborne holding delay but could also result in unnecessary delay in the (frequently observed) case of early program cancellation. In order to overcome part of this drawback, a fuel based cruise speed reduction strategy aimed at realizing airborne delay, was suggested by the authors in previous publications. By flying slower, at a specific speed, aircraft that are airborne can recover part of their initially assigned delay without incurring extra fuel consumption if the ground delay program is canceled before planned. In this paper, the effect of the scope of the program is assessed when applying this strategy. A case study is presented by analyzing all the ground delay programs that took place at San Francisco, Newark Liberty and Chicago O’Hare International airports during one year. Results show that by the introduction of this technique it is possible to define larger scopes, partially reducing the amount of unrecovered delay.