986 resultados para Green coffee oil
Resumo:
Introduction - Mycotoxin contamination was reported to occur in some food and commodities, such as coffee, particularly due to the presence of toxigenic fungi such as Aspergillus, Penicillium and Fusarium spp. Aspergilli are known to produce high levels of mycotoxins, such as ochratoxin and aflatoxin. Aspergillus ochraceus has been proposed as the major cause of ochratoxin A contamination in coffee beans. Aim of the study - The aim of this work was to evaluate the prevalence of Aspergillus sections Circumdati, Flavi and Fumigati in 28 green coffee samples to be used by Portuguese coffee industry, from Coffea arabica (Arabica coffee) and Coffea canephora (Robusta coffee) species from different origins.
Resumo:
Entre os produtos comercializados a nível mundial, o café é um dos mais valiosos, sendo apenas superado pelo petróleo em termos de movimentações financeiras. Assim, torna-se indiscutível a importância do café na política e na economia de muitos países, pois o seu cultivo, processamento, comercialização, transporte e mercado criam milhões de empregos por todo o mundo. A composição química do café constitui um parâmetro fundamental na distinção das diferentes variedades deste produto, recorrendo-se frequentemente à análise de compostos como a cafeína, o ácido hidroxicinâmico e o ácido clorogénico, entre outros. O principal objetivo deste trabalho focou-se no estudo do perfil dos compostos bioativos presentes em grãos de café verde provenientes de Cabo Verde e das inerentes propriedades antioxidantes. Mais concretamente, procedeu-se à quantificação dos compostos bioativos com maior importância no café, como é o caso dos fenólicos e flavonoides totais, das antocianinas e dos carotenoides. A quantidade de compostos fenólicos totais encontrados na amostra dos grãos de café verde foi 4,855 mg/g. Quanto à quantidade de flavonoides totais, foi 41,2 mg/g e de antocianinas 0,465 mg/g. Relativamente aos carotenoides estudados, a clorofila a apresenta-se em quantidade igual a 1,5×10 mg/g, a clorofila b, 1,6×10 mg/g, o licopeno, 6×10 mg/g e o β-caroteno aparenta ser inexistente nesta amostra. A quantificação destes compostos bioativos comprovou a sua presença na amostra de café verde e, consequentemente, evidenciou os potenciais benefícios que este produto traz para a saúde, sendo a capacidade antioxidante o mais prevalente.
Resumo:
The application of roasted coffee oil directly on freeze dried soluble coffee is used to minimize the formation of fine poder which adhere on the glass packaging, which results in a negative visual appearance, as well as contributes to the aromatic impact when opening the packaging. The coffee oil is considered a high cost product obtained from Arabica coffee beans, previosly selected and roasted, by mechanical press. In Brazil the coffee culture and marketing results in the selection of the beans by type of defects and beverage, the volume of exportation works with types of coffee beans with low quantity of defects resulting in a large volume of defective coffee beans trading on the domestic market. Nevertheless, coffees which present defective grains like green, black-green beans present differences in the final flavor of the roasted coffees. The aim of this study was to evaluate the chemical composition of the oils extracted from grains classified as normal, green and black-green, at natural and roasted conditions. The oil was obtained by cold extraction using solvents of different polarities, and yield was calculated as well as its fatty acid composition. The oil of the roasted defective coffee grains was also used to prepare drinks of lyophilized soluble coffee in order to verify if jugdes were able to differenciate the sensory caracteristics of the beverages, in comparison to the product prepared using commercial oil obtained by mechanical pressing. Samples of oil obtained from defective grains showed similar extraction yields compared to hot extraction. Cromatographs of oils of the deffective grains did not showed differences compared to normal grains. In relation to the sensory analysis of the soluble coffee beverages, it was verified that when applying oils of light roasted black-green beans or oils of medium and dark roasted green beans obtained with rapid process, judges had more difficulties to distinguish differences between samples. Economic viability demonstrated that with the actual prices of the coffee beans, the use of defective beans could reduce in 64% the costs of the raw beans.
Resumo:
Brazil is one of the major coffee producers in the world, because of this, the goal of this study was to assess the regional differences of coffee cultivation for the reference crops 2001/2002 and 2002/03 by means of a life cycle assessment (LCA) in order to generate detailed production inventory data as well as quantify the potential environmental impacts of this crop. All information considered in this study (use of water, fossil based energy, fertilizers, pesticides and correctives) was taken from data collected from the producing farms. Four Brazilian coffee producer regions located at the Southeastern region were evaluated: Sul de Minas Gerais and Cerrado Mineiro in Minas Gerais State, and Mogiana and Alta Paulista regions in São Paulo State. The data refer to a production of 25.2 million kg of green coffee. Depending on the considered region, the production of 1,000 kg of green coffee requires, on average, approx. 9,300 to 13,000 kg of total energy, 70 to 130 kg of diesel, 6,500 to 12,700 kg of process water, 270 to 340 kg of fertilizers (NPK), 2.0 to 13.0 kg of pesticides, 230 to 600 kg of correctives, and yield around 1,600 to 1,900 kg/ha. Despite 20% of the coffee growers showing a good environmental performance, i.e. consumption of pesticides, fertilizers and correctives lower than the regional averages, this study has also identified some farms that can probably reduce the amount of some inputs and enhance their environmental performance.
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
A literatura argumenta que o Brasil, embora ainda seja o maior exportador mundial de café verde, tem perdido poder neste mercado, pois a concorrência (rivalidade e probabilidade de entrada) imposta por países como a Colômbia e o Vietnã é forte o suficiente para tornar este mercado bastante competitivo. Assim, este artigo avalia o padrão recente de concorrência do mercado mundial de café verde utilizando uma metodologia econométrica mais usualmente empregada em análise antitruste. Para avaliar o comportamento dos consumidores, foram estimadas as elasticidades-preço da demanda mundial de café verde, por tipo de café, usando o modelo de demanda Logit Multinomial Antitruste. Para avaliar o comportamento de equilíbrio de mercado foram realizados testes de instabilidade de share de quantidade por meio de análise de cointegração em painel. Os resultados apontam para aumento da concorrência à variedade de café brasileiro por parte da demanda e manutenção de sharede quantidades como configuração de equilíbrio de mercado.
Resumo:
In the industrial production of soluble coffee, huge amounts of extracted coffee residues are generated; onaverage, for eachtonne of green coffee extracted, 480 kg of coffee ground waste is produced. This is a solid residue currently used to generate energy at the steam boilers from the soluble coffee industry. Some is also used or as fertilizer on agriculture fields. Seeking a better end use, the work reported here aimed to study the viability of hydrolyzing the coffee ground residue for the production of carbohydrates. Hydrolysis was undertaken with hydrochloric acid at different temperatures and pressures, using a water bath or autoclave.An enzymatic hydrolysis with Viscozyme Lwas developed using Whatman filter paper No1 and the optimal conditions were determined using a rotational central composite experimental design (DCCR).The best conditions to hydrolyze filter paper cellulose were 50 FBG (Fungal β-glucanase) of Viscozyme L at pH 4.0 for 1.0 h and 45 ºC. The ground coffee was hydrolyzed under the same conditions as described above for filter paper, however this enzymatic hydrolysis was not efficient. A combination of enzymatic hydrolysis as a pre-treatment for the ground coffee followed by acid hydrolysis using HCl conducted in an autoclave (120 C for 2.0 h) resulted in higher production of glucose as analyzed by HPLC. Another end use of the ground coffee evaluated was as source of substrate in the culture medium to grow Botryosphaeria rhodina MAMB-05 to produce the enzymes laccase and cellulase. Highest enzyme titres obtained were with 8% (w/v) coffee grounds to which was added a minimum salts medium(Vogel), under agitation conditions (180 rpm) at 28ºC. The phenolic compounds present in the coffee grounds appear to have induced laccase by Botryosphaeria rhodina.
Resumo:
This paper uses examples from the history and practices of multi-national and large companies in the oil, chemical and asbestos industries to examine their legal and illegal despoiling and destruction of the environment and impact on human and non-human life. The discussion draws on the literature on green criminology and state-corporate crime and considers measures and arrangements that might mitigate or prevent such damaging acts. This paper is part of ongoing work on green criminology and crimes of the economy. It places these actions and crimes in the context of a global neo-liberal economic system and considers and critiques the distorting impact of the GDP model of ‘economic health’ and its consequences for the environment.
Resumo:
Model oil-in-water emulsions containing epicatechin (EC) and epigallocatechin gallate (EGCG) showed a synergistic increase in stability in emulsions containing added albumin. EGCG showed a stronger synergy (35%) with ovalbumin than did EC. Oxidation of the oil was monitored by determining peroxide values and hexanal contents. The effect of bovine serum albumin (BSA) on model oil-in-water emulsions containing each of the green tea catechins [epicatechin gallate (ECG), EGCG, EC and epigallocatechin (EGC)] was studied during storage at 30 degrees C. The green tea catechins showed moderate antioxidant activity in the emulsions with the order of activity being ECG approximate to EGCG > EC > EGC. Although BSA had very little antioxidant activity in the absence of phenolic antioxidants, the combination of BSA with each of the catechins showed strong antioxidant activity. BSA, in combination with EC, EGCG or EGC, showing the strongest antioxidant activity with good stability after 45 days storage. Model experiments with the catechins stored with BSA in aqueous solutions confirmed that protein-catechin adducts with antioxidant activity were formed between the catechins and protein. The antioxidant activity of the separated protein-catechin adducts increased strongly with storage time and was stronger for EGCG and ECG than for EC or EGC. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The contents of some nutrients in 35 Brazilian green and roasted coffee samples were determined by flame atomic absorption spectrometry (Ca, Mg, Fe, Cu, Mn, and Zn), flame atomic emission photometry (Na and K) and Kjeldahl (N) after preparing the samples by wet digestion procedures using i) a digester heating block and ii) a conventional microwave oven system with pressure and temperature control. The accuracy of the procedures was checked using three standard reference materials (National Institute of Standards and Technology, SRM 1573a Tomato Leaves, SRM 1547 Peach Leaves, SRM 1570a Trace Elements in Spinach). Analysis of data after application of t-test showed that results obtained by microwave-assisted digestion were more accurate than those obtained by block digester at 95% confidence level. Additionally to better accuracy, other favorable characteristics found were lower analytical blanks, lower reagent consumption, and shorter digestion time. Exploratory analysis of results using Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that Na, K, Ca, Cu, Mg, and Fe were the principal elements to discriminate between green and roasted coffee samples. ©2007 Sociedade Brasileira de Química.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Commercially viable carbon–neutral biodiesel production from microalgae has potential for replacing depleting petroleum diesel. The process of biodiesel production from microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-intensive processes. The development of effective large-scale lipid extraction processes which overcome the complexity of microalgae cell structure is considered one of the most vital requirements for commercial production. Thus the aim of this work was to investigate suitable extraction methods with optimised conditions to progress opportunities for sustainable microalgal biodiesel production. In this study, the green microalgal species consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) under high pressure and variable temperature and biomass moisture conditions using an Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent extraction was examined over a range of different process and sample conditions (dry biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 120 ºC, process time 5–15 min). Maximum total lipid yields were achieved at 50% and 75% sample dryness at temperatures of 90–120 ºC. We show that individual fatty acids (Palmitic acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by temperature and sample dryness, consequently affecting microalgal biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant with biodiesel quality standards under all extraction conditions used. Our results indicate that biodiesel quality can be positively manipulated by selecting process extraction conditions that favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values. Exceeding biodiesel standards for these two parameters opens blending opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.
Resumo:
Scope: Coffee is among the most frequently consumed beverages. Its consumption is inversely associated to the incidence of diseases related to reactive oxygen species; the phenomenon may be due to its antioxidant properties. Our primary objective was to investigate the impact of consumption of a coffee containing high levels of chlorogenic acids on the oxidation of proteins, DNA and membrane lipids; additionally, other redox biomarkers were monitored in an intervention trial. Methods and results: The treatment group (n=36) consumed instant coffee co-extracted from green and roasted beans, whereas the control consumed water (800 mL/P/day, 5 days). A global statistical analysis of four main biomarkers selected as primary outcomes showed that the overall changes are significant. 8-Isoprostaglandin F2α in urine declined by 15.3%, 3-nitrotyrosine was decreased by 16.1%, DNA migration due to oxidized purines and pyrimidines was (not significantly) reduced in lymphocytes by 12.5 and 14.1%. Other markers such as the total antioxidant capacity were moderately increased; e.g. LDL and malondialdehyde were shifted towards a non-significant reduction. Conclusion: The oxidation of DNA, lipids and proteins associated with the incidence of various diseases and the protection against their oxidative damage may be indicative for beneficial health effects of coffee.
Resumo:
This paper is an extension of Talking Green in Red States: Stories from the Great Plains (Gibson et al., 2014) that examined the communication strategies of planners involved in sustainability planning initiatives in the U.S. Great Plains. We expand these narratives beyond the Great Plains to Queensland, Australia by interviewing planners about their experiences when communicating and deliberating about issues of sustainability. Using a semi-formal structure, interviews are conducted as casual “coffee talks” (Maynard-Moody & Musheno, 2003). Together, these collected stories help us to understand how planners are “talking green” in conservative political atmospheres, across vastly differing geographies using an international comparative framework described by Reimer et al. (2014). The paper presents comparisons between the collected narratives, concerning similarities and differences in regard to the nuances of sustainability planning dialog. We relate the lessons learned about communication strategies of planners working in sustainability in Kansas and Queensland to the broader discourse of planning and politics, communicative planning and planning as storytelling, as they relate to sustainability planning in challenging situations. From this paper, the audience will better understand how: 1) to discuss environmental and sustainable planning in communities that have varying levels of distrust and suspicion towards these concepts; 2) to develop strategies to work around these planning communication issues, and; 3) international context affects these communication challenges.
Resumo:
A family of soybean oil (SO) based biodegradable cross-linked copolyesters sourced from renewable resources was developed for use as resorbable biomaterials. The polyesters were prepared by a melt condensation of epoxidized soybean oil polyol and sebacic acid with citric acid (CA) as a cross-linker. D-Mannitol (M) was added as an additional reactant to improve mechanical properties. Differential scanning calorimetry revealed that the polyester synthesized using only CA as the cross-linker was semicrystalline and elastomeric at physiological temperature. The polymers were hydrophobic in nature. The water wettability, elongation at break and the degradation rate of the polyesters decreased with increase in M content or curing time. Modeling of release kinetics of dyes showed a diffusion controlled mechanism underlies the observed sustained release from these polymers. The polyesters supported attachment and proliferation of human stem cells and were thus cytocompatible. Porous scaffolds induced osteogenic differentiation of the stern cells suggesting that these polymers are well suited for bone tissue engineering. Thus, this family of polyesters offers a low cost and green alternative as biocompatible, bioresobable polymers for potential use as resorbable biomaterials for tissue engineering and controlled release.