813 resultados para Greedy algorithm
Resumo:
It is known that the Minimum Weight Triangulation problem is NP-hard. Also the complexity of the Minimum Weight Pseudo-Triangulation problem is unknown, yet it is suspected to be also NP-hard. Therefore we focused on the development of approximate algorithms to find high quality triangulations and pseudo-triangulations of minimum weight. In this work we propose two metaheuristics to solve these problems: Ant Colony Optimization (ACO) and Simulated Annealing (SA). For the experimental study we have created a set of instances for MWT and MWPT problems, since no reference to benchmarks for these problems were found in the literature. Through experimental evaluation, we assess the applicability of the ACO and SA metaheuristics for MWT and MWPT problems. These results are compared with those obtained from the application of deterministic algorithms for the same problems (Delaunay Triangulation for MWT and a Greedy algorithm respectively for MWT and MWPT).
Resumo:
In this paper, we study a robot swarm that has to perform task allocation in an environment that features periodic properties. In this environment, tasks appear in different areas following periodic temporal patterns. The swarm has to reallocate its workforce periodically, performing a temporal task allocation that must be synchronized with the environment to be effective. We tackle temporal task allocation using methods and concepts that we borrow from the signal processing literature. In particular, we propose a distributed temporal task allocation algorithm that synchronizes robots of the swarm with the environment and with each other. In this algorithm, robots use only local information and a simple visual communication protocol based on light blinking. Our results show that a robot swarm that uses the proposed temporal task allocation algorithm performs considerably more tasks than a swarm that uses a greedy algorithm.
Resumo:
In this paper, we propose a novel filter for feature selection. Such filter relies on the estimation of the mutual information between features and classes. We bypass the estimation of the probability density function with the aid of the entropic-graphs approximation of Rényi entropy, and the subsequent approximation of the Shannon one. The complexity of such bypassing process does not depend on the number of dimensions but on the number of patterns/samples, and thus the curse of dimensionality is circumvented. We show that it is then possible to outperform a greedy algorithm based on the maximal relevance and minimal redundancy criterion. We successfully test our method both in the contexts of image classification and microarray data classification.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
* The research was supported by INTAS 00-397 and 00-626 Projects.
Resumo:
A localized method to distribute paths on random graphs is devised, aimed at finding the shortest paths between given source/destination pairs while avoiding path overlaps at nodes. We propose a method based on message-passing techniques to process global information and distribute paths optimally. Statistical properties such as scaling with system size and number of paths, average path-length and the transition to the frustrated regime are analyzed. The performance of the suggested algorithm is evaluated through a comparison against a greedy algorithm. © 2014 IOP Publishing Ltd and SISSA Medialab srl.
Resumo:
Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. ^ A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: (a) increase the efficiency of the portfolio optimization process, (b) implement large-scale optimizations, and (c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. ^ The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. ^ The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH). ^
Resumo:
Bayesian nonparametric models, such as the Gaussian process and the Dirichlet process, have been extensively applied for target kinematics modeling in various applications including environmental monitoring, traffic planning, endangered species tracking, dynamic scene analysis, autonomous robot navigation, and human motion modeling. As shown by these successful applications, Bayesian nonparametric models are able to adjust their complexities adaptively from data as necessary, and are resistant to overfitting or underfitting. However, most existing works assume that the sensor measurements used to learn the Bayesian nonparametric target kinematics models are obtained a priori or that the target kinematics can be measured by the sensor at any given time throughout the task. Little work has been done for controlling the sensor with bounded field of view to obtain measurements of mobile targets that are most informative for reducing the uncertainty of the Bayesian nonparametric models. To present the systematic sensor planning approach to leaning Bayesian nonparametric models, the Gaussian process target kinematics model is introduced at first, which is capable of describing time-invariant spatial phenomena, such as ocean currents, temperature distributions and wind velocity fields. The Dirichlet process-Gaussian process target kinematics model is subsequently discussed for modeling mixture of mobile targets, such as pedestrian motion patterns.
Novel information theoretic functions are developed for these introduced Bayesian nonparametric target kinematics models to represent the expected utility of measurements as a function of sensor control inputs and random environmental variables. A Gaussian process expected Kullback Leibler divergence is developed as the expectation of the KL divergence between the current (prior) and posterior Gaussian process target kinematics models with respect to the future measurements. Then, this approach is extended to develop a new information value function that can be used to estimate target kinematics described by a Dirichlet process-Gaussian process mixture model. A theorem is proposed that shows the novel information theoretic functions are bounded. Based on this theorem, efficient estimators of the new information theoretic functions are designed, which are proved to be unbiased with the variance of the resultant approximation error decreasing linearly as the number of samples increases. Computational complexities for optimizing the novel information theoretic functions under sensor dynamics constraints are studied, and are proved to be NP-hard. A cumulative lower bound is then proposed to reduce the computational complexity to polynomial time.
Three sensor planning algorithms are developed according to the assumptions on the target kinematics and the sensor dynamics. For problems where the control space of the sensor is discrete, a greedy algorithm is proposed. The efficiency of the greedy algorithm is demonstrated by a numerical experiment with data of ocean currents obtained by moored buoys. A sweep line algorithm is developed for applications where the sensor control space is continuous and unconstrained. Synthetic simulations as well as physical experiments with ground robots and a surveillance camera are conducted to evaluate the performance of the sweep line algorithm. Moreover, a lexicographic algorithm is designed based on the cumulative lower bound of the novel information theoretic functions, for the scenario where the sensor dynamics are constrained. Numerical experiments with real data collected from indoor pedestrians by a commercial pan-tilt camera are performed to examine the lexicographic algorithm. Results from both the numerical simulations and the physical experiments show that the three sensor planning algorithms proposed in this dissertation based on the novel information theoretic functions are superior at learning the target kinematics with
little or no prior knowledge
Resumo:
Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: a) increase the efficiency of the portfolio optimization process, b) implement large-scale optimizations, and c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH).
Resumo:
Taxonomies have gained a broad usage in a variety of fields due to their extensibility, as well as their use for classification and knowledge organization. Of particular interest is the digital document management domain in which their hierarchical structure can be effectively employed in order to organize documents into content-specific categories. Common or standard taxonomies (e.g., the ACM Computing Classification System) contain concepts that are too general for conceptualizing specific knowledge domains. In this paper we introduce a novel automated approach that combines sub-trees from general taxonomies with specialized seed taxonomies by using specific Natural Language Processing techniques. We provide an extensible and generalizable model for combining taxonomies in the practical context of two very large European research projects. Because the manual combination of taxonomies by domain experts is a highly time consuming task, our model measures the semantic relatedness between concept labels in CBOW or skip-gram Word2vec vector spaces. A preliminary quantitative evaluation of the resulting taxonomies is performed after applying a greedy algorithm with incremental thresholds used for matching and combining topic labels.
Resumo:
A method is outlined for optimising graph partitions which arise in mapping un- structured mesh calculations to parallel computers. The method employs a combination of iterative techniques to both evenly balance the workload and minimise the number and volume of interprocessor communications. They are designed to work efficiently in parallel as well as sequentially and when combined with a fast direct partitioning technique (such as the Greedy algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and flexible solution to the static graph-partitioning problem. The algorithms can also be used for dynamic load-balancing and a clustering technique can additionally be employed to speed up the whole process. Experiments indicate that the resulting parallel code can provide high quality partitions, independent of the initial partition, within a few seconds.
Resumo:
A method is outlined for optimising graph partitions which arise in mapping unstructured mesh calculations to parallel computers. The method employs a relative gain iterative technique to both evenly balance the workload and minimise the number and volume of interprocessor communications. A parallel graph reduction technique is also briefly described and can be used to give a global perspective to the optimisation. The algorithms work efficiently in parallel as well as sequentially and when combined with a fast direct partitioning technique (such as the Greedy algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and flexible solution to the static graph-partitioning problem. Experiments indicate that the resulting parallel code can provide high quality partitions, independent of the initial partition, within a few seconds. The algorithms can also be used for dynamic load-balancing, reusing existing partitions and in this case the procedures are much faster than static techniques, provide partitions of similar or higher quality and, in comparison, involve the migration of a fraction of the data.
Resumo:
The goal of image retrieval and matching is to find and locate object instances in images from a large-scale image database. While visual features are abundant, how to combine them to improve performance by individual features remains a challenging task. In this work, we focus on leveraging multiple features for accurate and efficient image retrieval and matching. We first propose two graph-based approaches to rerank initially retrieved images for generic image retrieval. In the graph, vertices are images while edges are similarities between image pairs. Our first approach employs a mixture Markov model based on a random walk model on multiple graphs to fuse graphs. We introduce a probabilistic model to compute the importance of each feature for graph fusion under a naive Bayesian formulation, which requires statistics of similarities from a manually labeled dataset containing irrelevant images. To reduce human labeling, we further propose a fully unsupervised reranking algorithm based on a submodular objective function that can be efficiently optimized by greedy algorithm. By maximizing an information gain term over the graph, our submodular function favors a subset of database images that are similar to query images and resemble each other. The function also exploits the rank relationships of images from multiple ranked lists obtained by different features. We then study a more well-defined application, person re-identification, where the database contains labeled images of human bodies captured by multiple cameras. Re-identifications from multiple cameras are regarded as related tasks to exploit shared information. We apply a novel multi-task learning algorithm using both low level features and attributes. A low rank attribute embedding is joint learned within the multi-task learning formulation to embed original binary attributes to a continuous attribute space, where incorrect and incomplete attributes are rectified and recovered. To locate objects in images, we design an object detector based on object proposals and deep convolutional neural networks (CNN) in view of the emergence of deep networks. We improve a Fast RCNN framework and investigate two new strategies to detect objects accurately and efficiently: scale-dependent pooling (SDP) and cascaded rejection classifiers (CRC). The SDP improves detection accuracy by exploiting appropriate convolutional features depending on the scale of input object proposals. The CRC effectively utilizes convolutional features and greatly eliminates negative proposals in a cascaded manner, while maintaining a high recall for true objects. The two strategies together improve the detection accuracy and reduce the computational cost.
Resumo:
Safe operation of unmanned aerial vehicles (UAVs) over populated areas requires reducing the risk posed by a UAV if it crashed during its operation. We considered several types of UAV risk-based path planning problems and developed techniques for estimating the risk to third parties on the ground. The path planning problem requires making trade-offs between risk and flight time. Four optimization approaches for solving the problem were tested; a network-based approach that used a greedy algorithm to improve the original solution generated the best solutions with the least computational effort. Additionally, an approach for solving a combined design and path planning problems was developed and tested. This approach was extended to solve robust risk-based path planning problem in which uncertainty about wind conditions would affect the risk posed by a UAV.
Resumo:
OBJECTIVES AND STUDY METHOD: There are two subjects in this thesis: “Lot production size for a parallel machine scheduling problem with auxiliary equipment” and “Bus holding for a simulated traffic network”. Although these two themes seem unrelated, the main idea is the optimization of complex systems. The “Lot production size for a parallel machine scheduling problem with auxiliary equipment” deals with a manufacturing setting where sets of pieces form finished products. The aim is to maximize the profit of the finished products. Each piece may be processed in more than one mold. Molds must be mounted on machines with their corresponding installation setup times. The key point of our methodology is to solve the single period lot-sizing decisions for the finished products together with the piece-mold and the mold-machine assignments, relaxing the constraint that a single mold may not be used in two machines at the same time. For the “Bus holding for a simulated traffic network” we deal with One of the most annoying problems in urban bus operations is bus bunching, which happens when two or more buses arrive at a stop nose to tail. Bus bunching reflects an unreliable service that affects transit operations by increasing passenger-waiting times. This work proposes a linear mathematical programming model that establishes bus holding times at certain stops along a transit corridor to avoid bus bunching. Our approach needs real-time input, so we simulate a transit corridor and apply our mathematical model to the data generated. Thus, the inherent variability of a transit system is considered by the simulation, while the optimization model takes into account the key variables and constraints of the bus operation. CONTRIBUTIONS AND CONCLUSIONS: For the “Lot production size for a parallel machine scheduling problem with auxiliary equipment” the relaxation we propose able to find solutions more efficiently, moreover our experimental results show that most of the solutions verify that molds are non-overlapping even if they are installed on several machines. We propose an exact integer linear programming, a Relax&Fix heuristic, and a multistart greedy algorithm to solve this problem. Experimental results on instances based on real-world data show the efficiency of our approaches. The mathematical model and the algorithm for the lot production size problem, showed in this research, can be used for production planners to help in the scheduling of the manufacturing. For the “Bus holding for a simulated traffic network” most of the literature considers quadratic models that minimize passenger-waiting times, but they are harder to solve and therefore difficult to operate by real-time systems. On the other hand, our methodology reduces passenger-waiting times efficiently given our linear programming model, with the characteristic of applying control intervals just every 5 minutes.