847 resultados para Graphics Processor Unit
Resumo:
Parallel hyperspectral unmixing problem is considered in this paper. A semisupervised approach is developed under the linear mixture model, where the abundance's physical constraints are taken into account. The proposed approach relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. Since Libraries are potentially very large and hyperspectral datasets are of high dimensionality a parallel implementation in a pixel-by-pixel fashion is derived to properly exploits the graphics processing units (GPU) architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for real hyperspectral datasets reveal significant speedup factors, up to 164 times, with regards to optimized serial implementation.
Resumo:
In this paper, a new parallel method for sparse spectral unmixing of remotely sensed hyperspectral data on commodity graphics processing units (GPUs) is presented. A semi-supervised approach is adopted, which relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. This method is based on the spectral unmixing by splitting and augmented Lagrangian (SUNSAL) that estimates the material's abundance fractions. The parallel method is performed in a pixel-by-pixel fashion and its implementation properly exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for simulated and real hyperspectral datasets reveal significant speedup factors, up to 1 64 times, with regards to optimized serial implementation.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
The Graphics Processing Unit (GPU) is present in almost every modern day personal computer. Despite its specific purpose design, they have been increasingly used for general computations with very good results. Hence, there is a growing effort from the community to seamlessly integrate this kind of devices in everyday computing. However, to fully exploit the potential of a system comprising GPUs and CPUs, these devices should be presented to the programmer as a single platform. The efficient combination of the power of CPU and GPU devices is highly dependent on each device’s characteristics, resulting in platform specific applications that cannot be ported to different systems. Also, the most efficient work balance among devices is highly dependable on the computations to be performed and respective data sizes. In this work, we propose a solution for heterogeneous environments based on the abstraction level provided by algorithmic skeletons. Our goal is to take full advantage of the power of all CPU and GPU devices present in a system, without the need for different kernel implementations nor explicit work-distribution.To that end, we extended Marrow, an algorithmic skeleton framework for multi-GPUs, to support CPU computations and efficiently balance the work-load between devices. Our approach is based on an offline training execution that identifies the ideal work balance and platform configurations for a given application and input data size. The evaluation of this work shows that the combination of CPU and GPU devices can significantly boost the performance of our benchmarks in the tested environments, when compared to GPU-only executions.
Resumo:
Diplomityössä on käsitelty uudenlaisia menetelmiä riippumattomien komponenttien analyysiin(ICA): Menetelmät perustuvat colligaatioon ja cross-momenttiin. Colligaatio menetelmä perustuu painojen colligaatioon. Menetelmässä on käytetty kahden tyyppisiä todennäköisyysjakaumia yhden sijasta joka perustuu yleiseen itsenäisyyden kriteeriin. Työssä on käytetty colligaatio lähestymistapaa kahdella asymptoottisella esityksellä. Gram-Charlie ja Edgeworth laajennuksia käytetty arvioimaan todennäköisyyksiä näissä menetelmissä. Työssä on myös käytetty cross-momentti menetelmää joka perustuu neljännen asteen cross-momenttiin. Menetelmä on hyvin samankaltainen FastICA algoritmin kanssa. Molempia menetelmiä on tarkasteltu lineaarisella kahden itsenäisen muuttajan sekoituksella. Lähtö signaalit ja sekoitetut matriisit ovattuntemattomia signaali lähteiden määrää lukuunottamatta. Työssä on vertailtu colligaatio menetelmään ja sen modifikaatioita FastICA:an ja JADE:en. Työssä on myös tehty vertailu analyysi suorituskyvyn ja keskusprosessori ajan suhteen cross-momenttiin perustuvien menetelmien, FastICA:n ja JADE:n useiden sekoitettujen parien kanssa.
Resumo:
Tässä kandidaatintyössä luodaan kattava katsaus erilaisiin PC-laiteissa toimiviin usean näytön käyttöönottomenetelmiin, joita on olemassa useita ominaisuuksiltaan ja käyttötarkoituksiltaan erilaisia. Työssä perehdytään Windowsin usean näytön tuen historiaan ja sen kehitykseen eri Windows versioiden välillä tuen alkuajoista 1990-luvulta nykyaikaan aina viimeisimpiin Windows käyttöjärjestelmiin asti. Lopuksi tarkastellaan vielä pelien usean näytön tukea ja kuinka hyödyntää useaa näyttöä sellaisissa peleissä, jotka eivät sitä sisäänrakennetusti tue.
Resumo:
We have optimised the atmospheric radiation algorithm of the FAMOUS climate model on several hardware platforms. The optimisation involved translating the Fortran code to C and restructuring the algorithm around the computation of a single air column. Instead of the existing MPI-based domain decomposition, we used a task queue and a thread pool to schedule the computation of individual columns on the available processors. Finally, four air columns are packed together in a single data structure and computed simultaneously using Single Instruction Multiple Data operations. The modified algorithm runs more than 50 times faster on the CELL’s Synergistic Processing Elements than on its main PowerPC processing element. On Intel-compatible processors, the new radiation code runs 4 times faster. On the tested graphics processor, using OpenCL, we find a speed-up of more than 2.5 times as compared to the original code on the main CPU. Because the radiation code takes more than 60% of the total CPU time, FAMOUS executes more than twice as fast. Our version of the algorithm returns bit-wise identical results, which demonstrates the robustness of our approach. We estimate that this project required around two and a half man-years of work.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Identify opportunities for software parallelism is a task that takes a lot of human time, but once some code patterns for parallelism are identified, a software could quickly accomplish this task. Thus, automating this process brings many benefits such as saving time and reducing errors caused by the programmer [1]. This work aims at developing a software environment that identifies opportunities for parallelism in a source code written in C language, and generates a program with the same behavior, but with higher degree of parallelism, compatible with a graphics processor compatible with CUDA architecture.
Resumo:
Técnicas de reconhecimento de padrões tem como principal objetivo classificar um conjunto de amostras, sendo o processo de aprendizado a fase de maior consumo de tempo. O problema pode piorar em ferramentas de classificação interativas, o que pode ser inaceitável para grandes bases de dados. Um exemplo de classificador é o baseado em Floresta de Caminhos Ótimos [8] - OPF. Dado que muitos trabalhos tem sido orientados à implementação de algoritmos de reconhecimento de padrões em ambiente General Purpose Graphics Processing Unit - GPGPU, o presente estudo objetivou a implementação da etapa de treinamento do classificador Floresta de Caminhos Ótimos em CUDA, visando aumentar a sua eficiência. A otimização do classificador em CUDA demonstrou uma fase de treinamento mais rápida que a versão original.
Resumo:
Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)
Resumo:
For broadcasting purposes MIXED REALITY, the combination of real and virtual scene content, has become ubiquitous nowadays. Mixed Reality recording still requires expensive studio setups and is often limited to simple color keying. We present a system for Mixed Reality applications which uses depth keying and provides threedimensional mixing of real and artificial content. It features enhanced realism through automatic shadow computation which we consider a core issue to obtain realism and a convincing visual perception, besides the correct alignment of the two modalities and correct occlusion handling. Furthermore we present a possibility to support placement of virtual content in the scene. Core feature of our system is the incorporation of a TIME-OF-FLIGHT (TOF)-camera device. This device delivers real-time depth images of the environment at a reasonable resolution and quality. This camera is used to build a static environment model and it also allows correct handling of mutual occlusions between real and virtual content, shadow computation and enhanced content planning. The presented system is inexpensive, compact, mobile, flexible and provides convenient calibration procedures. Chroma-keying is replaced by depth-keying which is efficiently performed on the GRAPHICS PROCESSING UNIT (GPU) by the usage of an environment model and the current ToF-camera image. Automatic extraction and tracking of dynamic scene content is herewith performed and this information is used for planning and alignment of virtual content. An additional sustainable feature is that depth maps of the mixed content are available in real-time, which makes the approach suitable for future 3DTV productions. The presented paper gives an overview of the whole system approach including camera calibration, environment model generation, real-time keying and mixing of virtual and real content, shadowing for virtual content and dynamic object tracking for content planning.