939 resultados para Graph Code
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries, in particular, from explosions. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel for its simplicity and sufficiency for practical engineering design problems. The code uses a finite-volume formulation of the unsteady Euler equations with a second order explicit Runge-Kutta Godonov (MUSCL) scheme. Gradients are calculated using a least-squares method with a minmod limiter. Flux solvers used are AUSM, AUSMDV and EFM. No fluid-structure coupling or chemical reactions are allowed, but gas models can be perfect gas and JWL or JWLB for the explosive products. This report also describes the code’s ‘octree’ mesh adaptive capability and point-inclusion query procedures for the VCE geometry engine. Finally, some space will also be devoted to describing code parallelization using the shared-memory OpenMP paradigm. The user manual to the code is to be found in the companion report 2007/13.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel as it is simple to code and sufficient for practical engineering design problems. This also makes the code much more ‘user-friendly’ than structured grid approaches as the gridding process is done automatically. The CFD methodology relies on a finite-volume formulation of the unsteady Euler equations and is solved using a standard explicit Godonov (MUSCL) scheme. Both octree-based adaptive mesh refinement and shared-memory parallel processing capability have also been incorporated. For further details on the theory behind the code, see the companion report 2007/12.
Resumo:
The elevated plus-maze is a device widely used to assess rodent anxiety under the effect of several treatments, including pharmacological agents. The animal is placed at the center of the apparatus, which consists of two open arms and two arms enclosed by walls, and the number of entries and duration of stay in each arm are measured for a 5-min exposure period. The effect of an anxiolytic drug is to increase the percentage of time spent and number of entries into the open arms. In this work, we propose a new measure of anxiety levels in the rat submitted to the elevated plus-maze. We represented the spatial structure of the elevated plus-maze in terms of a directed graph and studied the statistics of the rat`s transitions between the nodes of the graph. By counting the number of times each transition is made and ordering them in descending frequency we represented the rat`s behavior in a rank-frequency plot. Our results suggest that the curves obtained under different pharmacological conditions can be well fitted by a power law with an exponent sensitive to both the drug type and the dose used. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Clinicians working in the field of congenital and paediatric cardiology have long felt the need for a common diagnostic and therapeutic nomenclature and coding system with which to classify patients of all ages with congenital and acquired cardiac disease. A cohesive and comprehensive system of nomenclature, suitable for setting a global standard for multicentric analysis of outcomes and stratification of risk, has only recently emerged, namely, The International Paediatric and Congenital Cardiac Code. This review, will give an historical perspective on the development of systems of nomenclature in general, and specifically with respect to the diagnosis and treatment of patients with paediatric and congenital cardiac disease. Finally, current and future efforts to merge such systems into the paperless environment of the electronic health or patient record on a global scale are briefly explored. On October 6, 2000, The International Nomenclature Committee for Pediatric and Congenital Heart Disease was established. In January, 2005, the International Nomenclature Committee was constituted in Canada as The International Society for Nomenclature of Paediatric and Congenital Heart Disease. This International Society now has three working groups. The Nomenclature Working Group developed The International Paediatric and Congenital Cardiac Code and will continue to maintain, expand, update, and preserve this International Code. It will also provide ready access to the International Code for the global paediatric and congenital cardiology and cardiac surgery communities, related disciplines, the healthcare industry, and governmental agencies, both electronically and in published form. The Definitions Working Group will write definitions for the terms in the International Paediatric and Congenital Cardiac Code, building on the previously published definitions from the Nomenclature Working Group. The Archiving Working Group, also known as The Congenital Heart Archiving Research Team, will link images and videos to the International Paediatric and Congenital Cardiac Code. The images and videos will be acquired from cardiac morphologic specimens and imaging modalities such as echocardiography, angiography, computerized axial tomography and magnetic resonance imaging, as well as intraoperative images and videos. Efforts are ongoing to expand the usage of The International Paediatric and Congenital Cardiac Code to other areas of global healthcare. Collaborative efforts are under-way involving the leadership of The International Nomenclature Committee for Pediatric and Congenital Heart Disease and the representatives of the steering group responsible for the creation of the 11th revision of the International Classification of Diseases, administered by the World Health Organisation. Similar collaborative efforts are underway involving the leadership of The International Nomenclature Committee for Pediatric and Congenital Heart Disease and the International Health Terminology Standards Development Organisation, who are the owners of the Systematized Nomenclature of Medicine or ""SNOMED"". The International Paediatric and Congenital Cardiac Code was created by specialists in the field to name and classify paediatric and congenital cardiac disease and its treatment. It is a comprehensive code that can be freely downloaded from the internet (http://www.IPCCC.net) and is already in use worldwide, particularly for international comparisons of outcomes. The goal of this effort is to create strategies for stratification of risk and to improve healthcare for the individual patient. The collaboration with the World Heath Organization, the International Health Terminology Standards Development Organisation, and the healthcare Industry, will lead to further enhancement of the International Code, and to Its more universal use.
Resumo:
Gene expression profiling by cDNA microarrays during murine thymus ontogeny has contributed to dissecting the large-scale molecular genetics of T cell maturation. Gene profiling, although useful for characterizing the thymus developmental phases and identifying the differentially expressed genes, does not permit the determination of possible interactions between genes. In order to reconstruct genetic interactions, on RNA level, within thymocyte differentiation, a pair of microarrays containing a total of 1,576 cDNA sequences derived from the IMAGE MTB library was applied on samples of developing thymuses (14-17 days of gestation). The data were analyzed using the GeneNetwork program. Genes that were previously identified as differentially expressed during thymus ontogeny showed their relationships with several other genes. The present method provided the detection of gene nodes coding for proteins implicated in the calcium signaling pathway, such as Prrg2 and Stxbp3, and in protein transport toward the cell membrane, such as Gosr2. The results demonstrate the feasibility of reconstructing networks based on cDNA microarray gene expression determinations, contributing to a clearer understanding of the complex interactions between genes involved in thymus/thymocyte development.
Resumo:
A k-star is the graph K-1,K-k. We prove a general theorem about k-star factorizations of Cayley graphs. This is used to give necessary and sufficient conditions for the existence of k-star factorizations of any power (K-q)(S) of a complete graph with prime power order q, products C-r1 x C-r2 x ... x C-rk of k cycles of arbitrary lengths, and any power (C-r)(S) of a cycle of arbitrary length. (C) 2001 John Wiley & Sons, Inc.
Resumo:
A survey of hybridization in proper names and commercial signs. CODE-SWITCHING is commonly seen as more typical of the spoken language. But there are some areas of language use, including business names (e.g. restaurants), where foreign proper names, common nouns and sometimes whole phrases are imported into the written language too. These constitute a more stable variety of code-switching than the spontaneous and more unpredictable code-switching in the spoken language.
Resumo:
Let g be the genus of the Hermitian function field H/F(q)2 and let C-L(D,mQ(infinity)) be a typical Hermitian code of length n. In [Des. Codes Cryptogr., to appear], we determined the dimension/length profile (DLP) lower bound on the state complexity of C-L(D,mQ(infinity)). Here we determine when this lower bound is tight and when it is not. For m less than or equal to n-2/2 or m greater than or equal to n-2/2 + 2g, the DLP lower bounds reach Wolf's upper bound on state complexity and thus are trivially tight. We begin by showing that for about half of the remaining values of m the DLP bounds cannot be tight. In these cases, we give a lower bound on the absolute state complexity of C-L(D,mQ(infinity)), which improves the DLP lower bound. Next we give a good coordinate order for C-L(D,mQ(infinity)). With this good order, the state complexity of C-L(D,mQ(infinity)) achieves its DLP bound (whenever this is possible). This coordinate order also provides an upper bound on the absolute state complexity of C-L(D,mQ(infinity)) (for those values of m for which the DLP bounds cannot be tight). Our bounds on absolute state complexity do not meet for some of these values of m, and this leaves open the question whether our coordinate order is best possible in these cases. A straightforward application of these results is that if C-L(D,mQ(infinity)) is self-dual, then its state complexity (with respect to the lexicographic coordinate order) achieves its DLP bound of n /2 - q(2)/4, and, in particular, so does its absolute state complexity.
Resumo:
A systematic method for constructing trigonometric R-matrices corresponding to the (multiplicity-free) tensor product of any two affinizable representations of a quantum algebra or superalgebra has been developed by the Brisbane group and its collaborators. This method has been referred to as the Tensor Product Graph Method. Here we describe applications of this method to untwisted and twisted quantum affine superalgebras.