983 resultados para Global Optimization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global optimization seeks a minimum or maximum of a multimodal function over a discrete or continuous domain. In this paper, we propose a hybrid heuristic-based on the CGRASP and GENCAN methods-for finding approximate solutions for continuous global optimization problems subject to box constraints. Experimental results illustrate the relative effectiveness of CGRASP-GENCAN on a set of benchmark multimodal test functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cutting angle method for global optimization was proposed in 1999 by Andramonov et al. (Appl. Math. Lett. 12 (1999) 95). Computer implementation of the resulting algorithm indicates that running time could be improved with appropriate modifications to the underlying mathematical description. In this article, we describe the initial algorithm and introduce a new one which we prove is significantly faster at each stage. Results of numerical experiments performed on a Pentium III 750 Mhz processor are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Splines with free knots have been extensively studied in regard to calculating the optimal knot positions. The dependence of the accuracy of approximation on the knot distribution is highly nonlinear, and optimisation techniques face a difficult problem of multiple local minima. The domain of the problem is a simplex, which adds to the complexity. We have applied a recently developed cutting angle method of deterministic global optimisation, which allows one to solve a wide class of optimisation problems on a simplex. The results of the cutting angle method are subsequently improved by local discrete gradient method. The resulting algorithm is sufficiently fast and guarantees that the global minimum has been reached. The results of numerical experiments are presented.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cutting angle method (CAM) is a deterministic global optimization technique applicable to Lipschitz functions f: Rn → R. The method builds a sequence of piecewise linear lower approximations to the objective function f. The sequence of solutions to these relaxed problems converges to the global minimum of f. This article adapts CAM to the case of linear constraints on the feasible domain. We show how the relaxed problems are modified, and how the numerical efficiency of solving these problems can be preserved. A number of numerical experiments confirms the improved numerical efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine a mathematical model of non-destructive testing of planar waveguides, based on numerical solution of a nonlinear integral equation. Such problem is ill-posed, and the method of Tikhonov regularization is applied. To minimize Tikhonov functional, and find the parameters of the waveguide, we use two new optimization methods: the cutting angle method of global optimization, and the discrete gradient method of nonsmooth local optimization. We examine how the noise in the experimental data influences the solution, and how the regularization parameter has to be chosen. We show that even with significant noise in the data, the numerical solution is of high accuracy, and the method can be used to process real experimental da.ta..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses various extensions of the classical within-group sum of squared errors functional, routinely used as the clustering criterion. Fuzzy c-means algorithm is extended to the case when clusters have irregular shapes, by representing the clusters with more than one prototype. The resulting minimization problem is non-convex and non-smooth. A recently developed cutting angle method of global optimization is applied to this difficult problem

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines methods of point wise construction of aggregation operators via optimal interpolation. It is shown that several types of application-specific requirements lead to interpolatory type constraints on the aggregation function. These constraints are translated into global optimization problems, which are the focus of this paper. We present several methods of reduction of the number of variables, and formulate suitable numerical algorithms based on Lipschitz optimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular geometry, the three dimensional arrangement of atoms in space, is a major factor determining the properties and reactivity of molecules, biomolecules and macromolecules. Computation of stable molecular conformations can be done by locating minima on the potential energy surface (PES). This is a very challenging global optimization problem because of extremely large numbers of shallow local minima and complicated landscape of PES. This paper illustrates the mathematical and computational challenges on one important instance of the problem, computation of molecular geometry of oligopeptides, and proposes the use of the Extended Cutting Angle Method (ECAM) to solve this problem.

ECAM is a deterministic global optimization technique, which computes tight lower bounds on the values of the objective function and fathoms those part of the domain where the global minimum cannot reside. As with any domain partitioning scheme, its challenge is an extremely large partition of the domain required for accurate lower bounds. We address this challenge by providing an efficient combinatorial algorithm for calculating the lower bounds, and by combining ECAM with a local optimization method, while preserving the deterministic character of ECAM.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods of Lipschitz optimization allow one to find and confirm the global minimum of multivariate Lipschitz functions using a finite number of function evaluations. This paper extends the Cutting Angle method, in which the optimization problem is solved by building a sequence of piecewise linear underestimates of the objective function. We use a more flexible set of support functions, which yields a better underestimate of a Lipschitz objective function. An efficient algorithm for enumeration of all local minima of the underestimate is presented, along with the results of numerical experiments. One dimensional Pijavski-Shubert method arises as a special case of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The approach taken here of reconstruction of the refractive index profile of planar waveguides involves solving a non-linear integral equation with Tikhonov regularization. Using global optimization with the new cutting angle and discrete gradient methods has yielded an acceptable reconstruction, even in the presence of significant noise in the data.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of optimization algorithm to PDE modeling groundwater remediation can greatly reduce remediation cost. However, groundwater remediation analysis requires a computational expensive simulation, therefore, effective parallel optimization could potentially greatly reduce computational expense. The optimization algorithm used in this research is Parallel Stochastic radial basis function. This is designed for global optimization of computationally expensive functions with multiple local optima and it does not require derivatives. In each iteration of the algorithm, an RBF is updated based on all the evaluated points in order to approximate expensive function. Then the new RBF surface is used to generate the next set of points, which will be distributed to multiple processors for evaluation. The criteria of selection of next function evaluation points are estimated function value and distance from all the points known. Algorithms created for serial computing are not necessarily efficient in parallel so Parallel Stochastic RBF is different algorithm from its serial ancestor. The application for two Groundwater Superfund Remediation sites, Umatilla Chemical Depot, and Former Blaine Naval Ammunition Depot. In the study, the formulation adopted treats pumping rates as decision variables in order to remove plume of contaminated groundwater. Groundwater flow and contamination transport is simulated with MODFLOW-MT3DMS. For both problems, computation takes a large amount of CPU time, especially for Blaine problem, which requires nearly fifty minutes for a simulation for a single set of decision variables. Thus, efficient algorithm and powerful computing resource are essential in both cases. The results are discussed in terms of parallel computing metrics i.e. speedup and efficiency. We find that with use of up to 24 parallel processors, the results of the parallel Stochastic RBF algorithm are excellent with speed up efficiencies close to or exceeding 100%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel common Tabu algorithm for global optimizations of engineering problems is presented. The robustness and efficiency of the presented method are evaluated by using standard mathematical functions and hy solving a practical engineering problem. The numerical results show that the proposed method is (i) superior to the conventional Tabu search algorithm in robustness, and (ii) superior to the simulated annealing algorithm in efficiency. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A branch and bound algorithm is proposed to solve the H2-norm model reduction problem for continuous-time linear systems, with conditions assuring convergence to the global optimum in finite time. The lower and upper bounds used in the optimization procedure are obtained through Linear Matrix Inequalities formulations. Examples illustrate the results.