474 resultados para Glazed pottery
Resumo:
Historical Annapolis Foundation (HAF) conducted terrestrial archaeological investigations at site 18AP21 in the city of Annapolis, Maryland. Excavations were carried out at this National Register site ostensibly as a Phase II project to evaluate the site and assess the need for further work. The site is at 99 Main Street in the center of downtown Annapolis, near the Annapolis waterfront. The project was carried out as part of the advanced work for the Annapolis History Center project, to be built in the adjoining buildings of 99 Main and 196 Green Streets. The buildings are the property of the Historic Annapolis Foundation and located in Maryland Research Unit 7. The excavations were undertaken by HAF, and funded by HAFF. The work was conducted for HAF and MHT, who holds an archaeological easement on the property. This preliminary phase of work included stratigraphic excavation of two testpit units. These two units revealed that the site of the existing 99 Main Street building was the location of three previous constructions. The current building at 99 Main Street, built in 1791, was preceded by an earlier brick dwelling, evidenced by a stout pier of bricks, which was attached to a wooden-sided structure that stood on a foundation of brick and stone. Ceramics indicate that these buildings date to the early-middle of the 18th century. A third structure of post-in-ground construction, evidenced by recovery of burned posts and wood fragments, likely existed prior to these, but evidence was scant. These excavations reveal that the site of 18AP21 holds potential for understanding Annapolis's early cultural developments, especially in the area of initial settlement and the origins of waterfront commerce. The assemblage of artifacts recovered includes a broad sample of common 18th century pottery such as creamware and Chinese export porcelain, and also includes some early colonial types such as tin-glazed earthenware and various red-bodied slipwares. The excavations do not provide conclusive evidence of the construction sequence. Consultation with MHT representatives indicates that further work at the site will likely be needed before modifications to the floor of the building can progress.
Resumo:
Natural ventilation is a sustainable solution to maintaining healthy and comfortable environmental conditions in buildings. However, the effective design, construction and operation of naturally ventilated buildings require a good understanding of complex airflow patterns caused by the buoyancy and wind effects.The work presented in this article employed a 3D computational fluid dynamics (CFD) analysis in order to investigate environmental conditions and thermal comfort of the occupants of a highly-glazed naturally ventilated meeting room. This analysis was facilitated by the real-time field measurements performed in an operating building, and previously developed formal calibration methodology for reliable CFD models of indoor environments. Since, creating an accurate CFD model of an occupied space in a real-life scenario requires a high level of CFD expertise, trusted experimental data and an ability to interpret model input parameters; the calibration methodology guided towards a robust and reliable CFD model of the indoor environment. This calibrated CFD model was then used to investigate indoor environmental conditions and to evaluate thermal comfort indices for the occupants of the room. Thermal comfort expresses occupants' satisfaction with thermal environment in buildings by defining the range of indoor thermal environmental conditions acceptable to a majority of occupants. In this study, the thermal comfort analysis, supported by both field measurements and CFD simulation results, confirmed a satisfactory and optimal room operation in terms of thermal environment for the investigated real-life scenario. © 2013 Elsevier Ltd.
Resumo:
This paper investigates the environmental conditions inside a highly-glazed cross-ventilated meeting room. A 3D computational fluid dynamics (CFD) model of an indoor environment is developed with the support of the field measurements performed in a normally operating room. The work presented here follows the steps of the formal calibration methodology for the development of CFD models of naturally ventilated environments. This paper utilises the calibration methodology in order to predict environmental conditions within the highly-glazed cross-ventilated room occupied by people. The CFD model is verified and validated with field measurements performed in an operating building. Moreover, parametric analysis determines the most influential boundary conditions on indoor air temperatures and air speeds
Resumo:
Tese de doutoramento, Física, Universidade de Lisboa, Faculdade de Ciências, 2013
Resumo:
The impact of microbial activity on the deterioration of cultural heritage is a well-recognized global problem. Glazed wall tiles constitute an important part of the worldwide cultural heritage. When exposed outdoors, biological colonization and consequently biodeterioration may occur. Few studies have dealt with this issue, as shown in the literature review on biodiversity, biodeterioration and bioreceptivity of architectural ceramic materials. Due to the lack of knowledge on the biodeteriogens affecting these assets, the characterization of microbial communities growing on Portuguese majolica glazed tiles, from Pena National Palace (Sintra, Portugal) and another from Casa da Pesca (Oeiras, Portugal) was carried out by culture and molecular biology techniques. Microbial communities were composed of microalgae, cyanobacteria, bacteria and fungi, including a new fungal species (Devriesia imbrexigena) described for the first time. Laboratory-based colonization experiments were performed to assess the biodeterioration patterns and bioreceptivity of glazed wall tiles produced in laboratory. Microorganisms previously identified on glazed tiles were inoculated on pristine and artificially aged tile models and incubated under laboratory conditions for 12 months. Phototrophic microorganisms were able to grow into glaze fissures and the tested fungus was able to form oxalates over the glaze. The bioreceptivity of artificially aged tiles was higher for phototrophic microorganisms than pristine tile models. A preliminary approach on mitigation strategies based on in situ application of commercial biocides and titanium dioxide (TiO2) nanoparticles on glazed tiles demonstrated that commercial biocides did not provide long term protection. In contrast, TiO2 treatment caused biofilm detachment. In addition, the use of TiO2 thin films on glazed wall tiles as a protective coating to prevent biological colonization was analysed under laboratorial conditions. Finally, conservation notes on tiles exposed to biological colonization were presented.
Resumo:
Receipt from W.H. Glenny, Sons and Co., Importers of Pottery, Buffalo, New York for payment on account, Feb. 2, 1887.