977 resultados para Geometric Sum
Resumo:
We investigate the widths of the recently observed charmonium like resonances X(3872), Z(4430), and Z(2)(4250) using QCD sum rules. Extending previous analyses regarding these states as diquark-antiquark states or molecules of D mesons, we introduce the Breit-Wigner function in the pole term. We find that introducing the width increases the mass at the small Borel window region. Using the operator-product expansion up to dimension 8, we find that the sum rules based on interpolating current with molecular components give a stable Borel curve from which both the masses and widths of these resonances can be well obtained. Thus the QCD sum rule approach strongly favors the molecular description of these states.
Resumo:
We evaluate the coincidence spectra in the nonmesonic weak decay (NMWD) Lambda N -> nN of Lambda hypernuclei (4)(Lambda)He, (5)(Lambda)He, (12)(Lambda)C, (16)(Lambda)O, and (28)(Lambda)Si, as a function of the sum of kinetic energies E(nN)=E(n)+E(N) for N=n,p. The strangeness-changing transition potential is described by the one-meson-exchange model, with commonly used parametrization. Two versions of the independent-particle shell model (IPSM) are employed to account for the nuclear structure of the final residual nuclei. They are as follows: (a) IPSM-a, where no correlation, except for the Pauli principle, is taken into account and (b) IPSM-b, where the highly excited hole states are considered to be quasistationary and are described by Breit-Wigner distributions, whose widths are estimated from the experimental data. All np and nn spectra exhibit a series of peaks in the energy interval 110 MeV < E(nN)< 170 MeV, one for each occupied shell-model state. Within the IPSM-a, and because of the recoil effect, each peak covers an energy interval proportional to A(-1) , going from congruent to 4 MeV for (28)(Lambda)Si to congruent to 40 MeV for (4)(Lambda)He. Such a description could be pretty fair for the light (4)(Lambda)He and (5)(Lambda)He hypernuclei. For the remaining, heavier, hypernuclei it is very important, however, to consider as well the spreading in strength of the deep-hole states and bring into play the IPSM-b approach. Notwithstanding the nuclear model that is employed the results depend only very weakly on the details of the dynamics involved in the decay process proper. We propose that the IPSM is the appropriate lowest-order approximation for the theoretical calculations of the of kinetic energy sum spectra in the NMWD. It is in comparison to this picture that one should appraise the effects of the final-state interactions and of the two-nucleon-induced decay mode.
Resumo:
Let P be a linear partial differential operator with analytic coefficients. We assume that P is of the form ""sum of squares"", satisfying Hormander's bracket condition. Let q be a characteristic point; for P. We assume that q lies on a symplectic Poisson stratum of codimension two. General results of Okaji Show that P is analytic hypoelliptic at q. Hence Okaji has established the validity of Treves' conjecture in the codimension two case. Our goal here is to give a simple, self-contained proof of this fact.
Resumo:
Given a prime power q, define c (q) as the minimum cardinality of a subset H of F 3 q which satisfies the following property: every vector in this space di ff ers in at most 1 coordinate from a multiple of a vector in H. In this work, we introduce two extremal problems in combinatorial number theory aiming to discuss a known connection between the corresponding coverings and sum-free sets. Also, we provide several bounds on these maps which yield new classes of coverings, improving the previous upper bound on c (q)
Resumo:
High-angle grain boundary migration is predicted during geometric dynamic recrystallization (GDRX) by two types of mathematical models. Both models consider the driving pressure due to curvature and a sinusoidal driving pressure owing to subgrain walls connected to the grain boundary. One model is based on the finite difference solution of a kinetic equation, and the other, on a numerical technique in which the boundary is subdivided into linear segments. The models show that an initially flat boundary becomes serrated, with the peak and valley migrating into both adjacent grains, as observed during GDRX. When the sinusoidal driving pressure amplitude is smaller than 2 pi, the boundary stops migrating, reaching an equilibrium shape. Otherwise, when the amplitude is larger than 2 pi, equilibrium is never reached and the boundary migrates indefinitely, which would cause the protrusions of two serrated parallel boundaries to impinge on each other, creating smaller equiaxed grains.
Resumo:
This work studies the turbo decoding of Reed-Solomon codes in QAM modulation schemes for additive white Gaussian noise channels (AWGN) by using a geometric approach. Considering the relations between the Galois field elements of the Reed-Solomon code and the symbols combined with their geometric dispositions in the QAM constellation, a turbo decoding algorithm, based on the work of Chase and Pyndiah, is developed. Simulation results show that the performance achieved is similar to the one obtained with the pragmatic approach with binary decomposition and analysis.
Resumo:
Quantum adiabatic pumping of charge and spin between two reservoirs (leads) has recently been demonstrated in nanoscale electronic devices. Pumping occurs when system parameters are varied in a cyclic manner and sufficiently slowly that the quantum system always remains in its ground state. We show that quantum pumping has a natural geometric representation in terms of gauge fields (both Abelian and non-Abelian) defined on the space of system parameters. Tunneling from a scanning tunneling microscope tip through a magnetic atom could be used to demonstrate the non-Abelian character of the gauge field.
Resumo:
The Montreal Process indicators are intended to provide a common framework for assessing and reviewing progress toward sustainable forest management. The potential of a combined geometrical-optical/spectral mixture analysis model was assessed for mapping the Montreal Process age class and successional age indicators at a regional scale using Landsat Thematic data. The project location is an area of eucalyptus forest in Emu Creek State Forest, Southeast Queensland, Australia. A quantitative model relating the spectral reflectance of a forest to the illumination geometry, slope, and aspect of the terrain surface and the size, shape, and density, and canopy size. Inversion of this model necessitated the use of spectral mixture analysis to recover subpixel information on the fractional extent of ground scene elements (such as sunlit canopy, shaded canopy, sunlit background, and shaded background). Results obtained fron a sensitivity analysis allowed improved allocation of resources to maximize the predictive accuracy of the model. It was found that modeled estimates of crown cover projection, canopy size, and tree densities had significant agreement with field and air photo-interpreted estimates. However, the accuracy of the successional stage classification was limited. The results obtained highlight the potential for future integration of high and moderate spatial resolution-imaging sensors for monitoring forest structure and condition. (C) Elsevier Science Inc., 2000.
Resumo:
The ground and excited state geometry of the six-coordinate copper(II) ion is examined in detail using the CuF64- and Cu(H2O)(6)(2+) complexes as examples. A variety of spectroscopic techniques are used to illustrate the relations between the geometric and electronic properties of these complexes through the characterization of their potential energy surfaces.
Resumo:
This paper proposes an alternative geometric framework for analysing the inter-relationship between domestic saving, productivity and income determination in discrete time. The framework provides a means of understanding how low saving economies like the United States sustained high growth rates in the 1990s whereas high saving Japan did not. It also illustrates how the causality between saving and economic activity runs both ways and that discrete changes in national output and income depend on both current and previous accumulation behaviour. The open economy analogue reveals how international capital movements can create external account imbalances that enhance income growth for both borrower and lender economies. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We reinterpret the state space dimension equations for geometric Goppa codes. An easy consequence is that if deg G less than or equal to n-2/2 or deg G greater than or equal to n-2/2 + 2g then the state complexity of C-L(D, G) is equal to the Wolf bound. For deg G is an element of [n-1/2, n-3/2 + 2g], we use Clifford's theorem to give a simple lower bound on the state complexity of C-L(D, G). We then derive two further lower bounds on the state space dimensions of C-L(D, G) in terms of the gonality sequence of F/F-q. (The gonality sequence is known for many of the function fields of interest for defining geometric Goppa codes.) One of the gonality bounds uses previous results on the generalised weight hierarchy of C-L(D, G) and one follows in a straightforward way from first principles; often they are equal. For Hermitian codes both gonality bounds are equal to the DLP lower bound on state space dimensions. We conclude by using these results to calculate the DLP lower bound on state complexity for Hermitian codes.
Resumo:
Although the concept of bet-hedging has been useful in microevolutionary studies for over 25 years, a recent paper by Andrew Simons suggests that it is also applicable to macroevolutionary events, with the same fundamental process of selection working at all temporal scales.
Resumo:
Based on the refined non-conforming element method for geometric nonlinear analysis, a refined nonlinear non-conforming triangular plate element is constructed using the Total Lagrangian (T.L.) and the Updated Lagrangian (U.L.) approach. The refined nonlinear non-conforming triangular plate element is based on the Allman's triangular plane element with drilling degrees of freedom [1] and the refined non-conforming triangular plate element RT9 [2]. The element is used to analyze the geometric nonlinear behavior of plates and the numerical examples show that the refined non-conforming triangular plate element by the T.L. and U.L. approach can give satisfactory results. The computed results obtained from the T.L. and U.L. approach for the same numerical examples are somewhat different and the reasons for the difference of the computed results are given in detail in this paper. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The crystal structures of a pair of cis and trans isomers of the macrocyclic chloropentaamine title complex, as their tetrachlorozincate(II) salts, [CoCl(C11H27N5)][ZnCl4], are reported. The two distinct isomeric forms lead to significant variations in the Co-N bond lengths and, furthermore, hydrogen bonding between the complex ions is influenced by the folded (cis) or planar (trans) conformations of the coordinated ligand.