965 resultados para General variable neighborhood search


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the sequencing of Multi-Mixed-Model Assembly Lines in a lean manufacturing environment, where an operational structure where several kanbans support several mixed-model assembly lines, so that all assembly lines can receive parts or sub-assemblies from all suppliers. To optimize this system, the sequencing seeks to minimize the distance between the real consumption and the constant ideal consumption of parts or subassemblies, thereby reducing the scaling of kanbans and intermediate stocks. To solve the sequencing problems, the method Clustering Search was applied along with the metaheuristics Variable Neighborhood Search, Simulation Annealing and Iterative Local Search. Instances from the literature and generated instances were tested, thus allowing comparing the methods to each other and with other methods presented in the literature. The performance of the Clustering Search with Iterated Local Search stands out by the quality and robustness of their solutions, and mainly for its efficiency, whereas it converges to better results at a lower computational cost

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mass spectrometry (MS) data provide a promising strategy for biomarker discovery. For this purpose, the detection of relevant peakbins in MS data is currently under intense research. Data from mass spectrometry are challenging to analyze because of their high dimensionality and the generally low number of samples available. To tackle this problem, the scientific community is becoming increasingly interested in applying feature subset selection techniques based on specialized machine learning algorithms. In this paper, we present a performance comparison of some metaheuristics: best first (BF), genetic algorithm (GA), scatter search (SS) and variable neighborhood search (VNS). Up to now, all the algorithms, except for GA, have been first applied to detect relevant peakbins in MS data. All these metaheuristic searches are embedded in two different filter and wrapper schemes coupled with Naive Bayes and SVM classifiers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a new model for the Heterogeneous p-median Problem (HPM), proposed to recover the hidden category structures present in the data provided by a sorting task procedure, a popular approach to understand heterogeneous individual’s perception of products and brands. This new model is named as the Penalty-free Heterogeneous p-median Problem (PFHPM), a single-objective version of the original problem, the HPM. The main parameter in the HPM is also eliminated, the penalty factor. It is responsible for the weighting of the objective function terms. The adjusting of this parameter controls the way that the model recovers the hidden category structures present in data, and depends on a broad knowledge of the problem. Additionally, two complementary formulations for the PFHPM are shown, both mixed integer linear programming problems. From these additional formulations lower-bounds were obtained for the PFHPM. These values were used to validate a specialized Variable Neighborhood Search (VNS) algorithm, proposed to solve the PFHPM. This algorithm provided good quality solutions for the PFHPM, solving artificial generated instances from a Monte Carlo Simulation and real data instances, even with limited computational resources. Statistical analyses presented in this work suggest that the new algorithm and model, the PFHPM, can recover more accurately the original category structures related to heterogeneous individual’s perceptions than the original model and algorithm, the HPM. Finally, an illustrative application of the PFHPM is presented, as well as some insights about some new possibilities for it, extending the new model to fuzzy environments

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents our work on decomposing a specific nurse rostering problem by cyclically assigning blocks of shifts, which are designed considering both hard and soft constraints, to groups of nurses. The rest of the shifts are then assigned to the nurses to construct a schedule based on the one cyclically generated by blocks. The schedules obtained by decomposition and construction can be further improved by a variable neighborhood search. Significant results are obtained and compared with a genetic algorithm and a variable neighborhood search approach on a problem that was presented to us by our collaborator, ORTEC bv, The Netherlands. We believe that the approach has the potential to be further extended to solve a wider range of nurse rostering problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latency can be defined as the sum of the arrival times at the customers. Minimum latency problems are specially relevant in applications related to humanitarian logistics. This thesis presents algorithms for solving a family of vehicle routing problems with minimum latency. First the latency location routing problem (LLRP) is considered. It consists of determining the subset of depots to be opened, and the routes that a set of homogeneous capacitated vehicles must perform in order to visit a set of customers such that the sum of the demands of the customers assigned to each vehicle does not exceed the capacity of the vehicle. For solving this problem three metaheuristic algorithms combining simulated annealing and variable neighborhood descent, and an iterated local search (ILS) algorithm, are proposed. Furthermore, the multi-depot cumulative capacitated vehicle routing problem (MDCCVRP) and the multi-depot k-traveling repairman problem (MDk-TRP) are solved with the proposed ILS algorithm. The MDCCVRP is a special case of the LLRP in which all the depots can be opened, and the MDk-TRP is a special case of the MDCCVRP in which the capacity constraints are relaxed. Finally, a LLRP with stochastic travel times is studied. A two-stage stochastic programming model and a variable neighborhood search algorithm are proposed for solving the problem. Furthermore a sampling method is developed for tackling instances with an infinite number of scenarios. Extensive computational experiments show that the proposed methods are effective for solving the problems under study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic differential equations (SDEs) arise from physical systems where the parameters describing the system can only be estimated or are subject to noise. Much work has been done recently on developing higher order Runge-Kutta methods for solving SDEs numerically. Fixed stepsize implementations of numerical methods have limitations when, for example, the SDE being solved is stiff as this forces the stepsize to be very small. This paper presents a completely general variable stepsize implementation of an embedded Runge Kutta pair for solving SDEs numerically; in this implementation, there is no restriction on the value used for the stepsize, and it is demonstrated that the integration remains on the correct Brownian path.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse porte sur les problèmes de tournées de véhicules avec fenêtres de temps où un gain est associé à chaque client et où l'objectif est de maximiser la somme des gains recueillis moins les coûts de transport. De plus, un même véhicule peut effectuer plusieurs tournées durant l'horizon de planification. Ce problème a été relativement peu étudié en dépit de son importance en pratique. Par exemple, dans le domaine de la livraison de denrées périssables, plusieurs tournées de courte durée doivent être combinées afin de former des journées complètes de travail. Nous croyons que ce type de problème aura une importance de plus en plus grande dans le futur avec l'avènement du commerce électronique, comme les épiceries électroniques, où les clients peuvent commander des produits par internet pour la livraison à domicile. Dans le premier chapitre de cette thèse, nous présentons d'abord une revue de la littérature consacrée aux problèmes de tournées de véhicules avec gains ainsi qu'aux problèmes permettant une réutilisation des véhicules. Nous présentons les méthodologies générales adoptées pour les résoudre, soit les méthodes exactes, les méthodes heuristiques et les méta-heuristiques. Nous discutons enfin des problèmes de tournées dynamiques où certaines données sur le problème ne sont pas connues à l'avance. Dans le second chapitre, nous décrivons un algorithme exact pour résoudre un problème de tournées avec fenêtres de temps et réutilisation de véhicules où l'objectif premier est de maximiser le nombre de clients desservis. Pour ce faire, le problème est modélisé comme un problème de tournées avec gains. L'algorithme exact est basé sur une méthode de génération de colonnes couplée avec un algorithme de plus court chemin élémentaire avec contraintes de ressources. Pour résoudre des instances de taille réaliste dans des temps de calcul raisonnables, une approche de résolution de nature heuristique est requise. Le troisième chapitre propose donc une méthode de recherche adaptative à grand voisinage qui exploite les différents niveaux hiérarchiques du problème (soit les journées complètes de travail des véhicules, les routes qui composent ces journées et les clients qui composent les routes). Dans le quatrième chapitre, qui traite du cas dynamique, une stratégie d'acceptation et de refus des nouvelles requêtes de service est proposée, basée sur une anticipation des requêtes à venir. L'approche repose sur la génération de scénarios pour différentes réalisations possibles des requêtes futures. Le coût d'opportunité de servir une nouvelle requête est basé sur une évaluation des scénarios avec et sans cette nouvelle requête. Enfin, le dernier chapitre résume les contributions de cette thèse et propose quelques avenues de recherche future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université de Technologie de Troyes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)