939 resultados para Galilean covariance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eddy covariance (EC)-flux measurement technique is based on measurement of turbulent motions of air with accurate and fast measurement devices. For instance, in order to measure methane flux a fast methane gas analyser is needed which measures methane concentration at least ten times in a second in addition to a sonic anemometer, which measures the three wind components with the same sampling interval. Previously measurement of methane flux was almost impossible to carry out with EC-technique due to lack of fast enough gas analysers. However during the last decade new instruments have been developed and thus methane EC-flux measurements have become more common. Performance of four methane gas analysers suitable for eddy covariance measurements are assessed in this thesis. The assessment and comparison was performed by analysing EC-data obtained during summer 2010 (1.4.-26.10.) at Siikaneva fen. The four participating methane gas analysers are TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and Prototype-7700 (LI-COR Biosciences, USA). RMT-200 functioned most reliably throughout the measurement campaign and the corresponding methane flux data had the smallest random error. In addition, methane fluxes calculated from data obtained from G1301-f and RMT-200 agree remarkably well throughout the measurement campaign. The calculated cospectra and power spectra agree well with corresponding temperature spectra. Prototype-7700 functioned only slightly over one month in the beginning of the measurement campaign and thus its accuracy and long-term performance is difficult to assess.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of separation of pitched sounds in monaural recordings. We present a novel feature for the estimation of parameters of overlapping harmonics which considers the covariance of partials of pitched sounds. Sound templates are formed from the monophonic parts of the mixture recording. A match for every note is found among these templates on the basis of covariance profile of their harmonics. The matching template for the note provides the second order characteristics for the overlapped harmonics of the note. The algorithm is tested on the RWC music database instrument sounds. The results clearly show that the covariance characteristics can be used to reconstruct overlapping harmonics effectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of extracting a signature representation of similar entities employing covariance descriptors. Covariance descriptors can efficiently represent objects and are robust to scale and pose changes. We posit that covariance descriptors corresponding to similar objects share a common geometrical structure which can be extracted through joint diagonalization. We term this diagonalizing matrix as the Covariance Profile (CP). CP can be used to measure the distance of a novel object to an object set through the diagonality measure. We demonstrate how CP can be employed on images as well as for videos, for applications such as face recognition and object-track clustering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High wind poses a number of hazards in different areas such as structural safety, aviation, and wind energy-where low wind speed is also a concern, pollutant transport, to name a few. Therefore, usage of a good prediction tool for wind speed is necessary in these areas. Like many other natural processes, behavior of wind is also associated with considerable uncertainties stemming from different sources. Therefore, to develop a reliable prediction tool for wind speed, these uncertainties should be taken into account. In this work, we propose a probabilistic framework for prediction of wind speed from measured spatio-temporal data. The framework is based on decompositions of spatio-temporal covariance and simulation using these decompositions. A novel simulation method based on a tensor decomposition is used here in this context. The proposed framework is composed of a set of four modules, and the modules have flexibility to accommodate further modifications. This framework is applied on measured data on wind speed in Ireland. Both short-and long-term predictions are addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable selection for regression is a classical statistical problem, motivated by concerns that too large a number of covariates may bring about overfitting and unnecessarily high measurement costs. Novel difficulties arise in streaming contexts, where the correlation structure of the process may be drifting, in which case it must be constantly tracked so that selections may be revised accordingly. A particularly interesting phenomenon is that non-selected covariates become missing variables, inducing bias on subsequent decisions. This raises an intricate exploration-exploitation tradeoff, whose dependence on the covariance tracking algorithm and the choice of variable selection scheme is too complex to be dealt with analytically. We hence capitalise on the strength of simulations to explore this problem, taking the opportunity to tackle the difficult task of simulating dynamic correlation structures. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensor networks can be naturally represented as graphical models, where the edge set encodes the presence of sparsity in the correlation structure between sensors. Such graphical representations can be valuable for information mining purposes as well as for optimizing bandwidth and battery usage with minimal loss of estimation accuracy. We use a computationally efficient technique for estimating sparse graphical models which fits a sparse linear regression locally at each node of the graph via the Lasso estimator. Using a recently suggested online, temporally adaptive implementation of the Lasso, we propose an algorithm for streaming graphical model selection over sensor networks. With battery consumption minimization applications in mind, we use this algorithm as the basis of an adaptive querying scheme. We discuss implementation issues in the context of environmental monitoring using sensor networks, where the objective is short-term forecasting of local wind direction. The algorithm is tested against real UK weather data and conclusions are drawn about certain tradeoffs inherent in decentralized sensor networks data analysis. © 2010 The Author. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: