979 resultados para Fusion process
Resumo:
In the context of the minimal supersymmetric standard model (MSSM), we discuss the possibility of the lightest Higgs boson with mass M-h = 98 GeV to be consistent with the 2.3 sigma excess observed at the LEP in the decay mode e(+)e(-) -> Zh, with h -> b (b) over bar. In the same region of the MSSM parameter space, the heavier Higgs boson (H) with mass M-H similar to 125 GeV is required to be consistent with the latest data on Higgs coupling measurements at the end of the 7 + 8 TeV LHC run with 25 fb(-1) of data. While scanning the MSSM parameter space, we impose constraints coming from flavor physics, relic density of the cold dark matter as well as direct dark matter searches. We study the possibility of observing this light Higgs boson in vector boson fusion process and associated production with W/Z-boson at the high luminosity (3000 fb(-1)) run of the 14 TeV LHC. Our analysis shows that this scenario can hardly be ruled out even at the high luminosity run of the LHC. However, the precise measurement of the Higgs signal strength ratios can play a major role to distinguish this scenario from the canonical MSSM one.
Resumo:
The shell effect is included in the improved isospin dependent quantum molecular dynamics model in which the shell correction energy of the system is calculated by using the deformed two-center shell model. A switch function is introduced to connect the shell correction energy of the projectile and the target with that of the compound nucleus during the dynamical fusion process. It is found that the calculated capture cross sections reproduce the experimental data quantitatively at the energy near the Coulomb barrier. The capture cross sections for reaction (35) (80) Br + (82) (208) Pb -> (117) (288) X are also calculated and discussed.
Resumo:
The need to merge multiple sources of uncertaininformation is an important issue in many application areas,especially when there is potential for contradictions betweensources. Possibility theory offers a flexible framework to represent,and reason with, uncertain information, and there isa range of merging operators, such as the conjunctive anddisjunctive operators, for combining information. However, withthe proposals to date, the context of the information to be mergedis largely ignored during the process of selecting which mergingoperators to use. To address this shortcoming, in this paper,we propose an adaptive merging algorithm which selects largelypartially maximal consistent subsets (LPMCSs) of sources, thatcan be merged through relaxation of the conjunctive operator, byassessing the coherence of the information in each subset. In thisway, a fusion process can integrate both conjunctive and disjunctiveoperators in a more flexible manner and thereby be morecontext dependent. A comparison with related merging methodsshows how our algorithm can produce a more consensual result.
Resumo:
Fusion process is known to be the initial step of viral infection and hence targeting the entry process is a promising strategy to design antiviral therapy. The self-inhibitory peptides derived from the enveloped (E) proteins function to inhibit the proteinprotein interactions in the membrane fusion step mediated by the viral E protein. Thus, they have the potential to be developed into effective antiviral therapy. Herein, we have developed a Monte Carlo-based computational method with the aim to identify and optimize potential peptide hits from the E proteins. The stability of the peptides, which indicates their potential to bind in situ to the E proteins, was evaluated by two different scoring functions, dipolar distance-scaled, finite, ideal-gas reference state and residue-specific all-atom probability discriminatory function. The method was applied to a-helical Class I HIV-1 gp41, beta-sheet Class II Dengue virus (DENV) type 2 E proteins, as well as Class III Herpes Simplex virus-1 (HSV-1) glycoprotein, a E protein with a mixture of a-helix and beta-sheet structural fold. The peptide hits identified are in line with the druggable regions where the self-inhibitory peptide inhibitors for the three classes of viral fusion proteins were derived. Several novel peptides were identified from either the hydrophobic regions or the functionally important regions on Class II DENV-2 E protein and Class III HSV-1 gB. They have potential to disrupt the proteinprotein interaction in the fusion process and may serve as starting points for the development of novel inhibitors for viral E proteins.
Resumo:
The peptides derived from envelope proteins have been shown to inhibit the protein-protein interactions in the virus membrane fusion process and thus have a great potential to be developed into effective antiviral therapies. There are three types of envelope proteins each exhibiting distinct structure folds. Although the exact fusion mechanism remains elusive, it was suggested that the three classes of viral fusion proteins share a similar mechanism of membrane fusion. The common mechanism of action makes it possible to correlate the properties of self-derived peptide inhibitors with their activities. Here we developed a support vector machine model using sequence-based statistical scores of self-derived peptide inhibitors as input features to correlate with their activities. The model displayed 92% prediction accuracy with the Matthew’s correlation coefficient of 0.84, obviously superior to those using physicochemical properties and amino acid decomposition as input. The predictive support vector machine model for self- derived peptides of envelope proteins would be useful in development of antiviral peptide inhibitors targeting the virus fusion process.
Resumo:
© 2015 FEBS
Resumo:
Affiliation: Département de microbiologie et immunologie, Faculté de médecine, Université de Montréal & Institut de Recherches Cliniques de Montréal
Resumo:
A study of the kinematics of the alpha-d coincidences in the (6)Li + (59)Co system at a bombarding energy of E(lab) = 29.6MeV is presented. With exclusive measurements performed over different angular intervals it is possible to identify the respective contributions of the sequential and direct projectile breakup components. The angular distributions of both breakup components are fairly well described by the Continuum-Discretized Coupled-Channels framework (CDCC). Furthermore, a careful analysis of these processes using a semiclassical approach provides information on both their lifetime and their distance of occurrence with respect to the target. Breakup to the low-lying (near-threshold) continuum is delayed, and happens at large internuclear distances. This suggests that the influence of the projectile breakup on the complete fusion process can be related essentially to the direct breakup to the (6)Li high-lying continuum spectrum.
Resumo:
We study the neutral Higgs boson production via the gluon fusion process with the tau(+)tau(-) final state at the upgraded Fermilab Tevatron, including a complete simulation of signal channels and leading background processes. For the SM Higgs boson, this h --> tau(+)tau(-) channel may provide important addition for the Higgs boson discovery in the mass range 120 - 140 GeV. In minimal supersymmetric models, natural enhancement for the signal rate over the SM expectation makes the h, H, A --> tau(+)tau(-) signal observable for large tan beta and low MA, which may lead to full coverage for SUSY Higgs parameters at the Tevatron with a moderate integrated luminosity.
Resumo:
We study the neutral Higgs boson production via the gluon fusion process with the τ+τ- final state at the upgraded Fermilab Tevatron, including a complete simulation of signal channels and leading background processes. For the SM Higgs boson, this h → τ +τ- channel may provide important addition for the Higgs boson discovery in the mass range 120 -140 GeV. In minimal supersymmetric models, natural enhancement for the signal rate over the SM expectation makes the h, H, A → τ+τ- signal observable for large tan β and low MA, which may lead to full coverage for SUSY Higgs parameters at the Tevatron with a moderate integrated luminosity. © SISSA/ISAS 2003.
Resumo:
Bentonitas são argilas que tem como seu principal constituinte argilominerais do grupo da esmectita, predominantemente montmorillonita. De acordo com o cátion predominante no espaço intercamada da esmectita, a bentonita pode ser classificada como sódica, cálcica ou magnesiana. Essas argilas possuem vasta aplicação industrial, como fluidos de perfuração, pelotização, moldes de fundição, dentre outros. Para algumas aplicações mais específicas e que agregam maior valor ao produto final, como na síntese de nanocompósitos polímero/argila, faz-se necessário à intercalação de íons orgânicos na intercamada do argilomineral. No Brasil, a produção industrial de argilas organofílicas é pequena e voltada para os mercados de tintas, graxas e resinas de poliéster. Empresas do setor de bentonitas, que ainda não estão produzindo esse tipo de material, vêm mostrando crescente interesse nesta aplicação. Dentro desse contexto, este trabalho buscou avaliar o potencial da Bentonita Formosa, uma Mg-bentonita recentemente descrita e relativamente abundante no nordeste do Brasil, na produção de argilas organofílicas e sua aplicação em síntese de nanocompósitos polímero/argila. Para isso, foram realizadas sínteses variando a concentração dos íons surfactantes hexadeciltrimetilamônio (HDTMA+) e dodeciltrimetilamônio (DTMA+) em 0,7, 1,0 e 1,5 vezes o valor de CEC, com tempo de reação de 12 horas e variação de temperatura de 25 ºC e 80 ºC. A Mg-Bentonita in natura e ativada com carbonato de sódio foi utilizada como material de partida. Tanto o material de partida como as argilas organofílicas obtidas foram caracterizadas por DRX, DTA/TG e IV. As argilas que apresentaram melhores resultados de intercalação foram utilizadas nas proporções de 1%, 3% e 10% para a síntese de nanocompósitos poli(metacrilato de metila) (PMMA)/argila. As análises de DRX confirmaram a intercalação dos íons orgânicos no espaço intercamada da Mg-esmectita com e sem ativação. Com os resultados de IV foi possível observar que a razão de confôrmeros gauche/trans diminui com o aumento do espaçamento basal. Os resultados de DTA/TG confirmaram a estabilidade térmica das argilas organofílicas à temperatura máxima de 200 °C, o que possibilita a utilização desse material em síntese de nanocompósitos polímero/argila obtidos por processo de fusão. A análise de DRX confirmou a intercalação do PMMA no espaço intercamada da Mg-esmectita em todos os nanocompósitos produzidos. Com as análises de DSC foi possível observar o aumento da temperatura de transição vítrea para todos os nanocompósitos, quando comparados com PMMA puro. Com isso, é possível concluir que a Mg-Bentonita pode ser intercalada com íons alquilamônio, sem a necessidade prévia de ativação sódica, formando argilas organofílicas, assim como sua utilização em síntese de nanocompósitos. Essa possibilidade de utilização da Mg-bentonita in natura pode representar uma importante diferença em termos de custos de processo, na comparação com as bentonitas cálcicas existentes no Brasil, ou mesmo as importadas, que precisam ser ativadas durante o beneficiamento. Finalmente, acredita-se que a pesquisa deve avançar com a avaliação das propriedades mecânicas dos nanocompósitos produzidos neste trabalho, visando as diferentes possibilidades de aplicações desses materiais.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ein wesentliches Ziel des COMPASS Experiments am CERN istdie direkte Messung der Gluonpolarisation in derinelastischen Streuung von polarisierten 160 GeV Myonen aneinem polarisierten Nukleon Target. In der inelastischenLepton-Nukleon-Streuung erlaubt der sog.Photon-Gluon-Fusions-Prozess (PGF) die Untersuchung derGluonverteilung.Im Rahmen der vorliegenden Arbeit wurde ein Triggersystementwickelt und aufgebaut, das gezielt PGF-Reaktionenselektiert. Das System basiert auf demkoinzidenten Nachweis der gestreuten Myonen zusammen mit denproduzierten Hadronen und generiert innerhalb 600 ns einhochselektives Triggersignal. Der Wirkungsquerschnitt derPGF wird von Ereignissen mit quasi-reellen Photonendominiert, d.h. der Myonstreuwinkel ist kein geeignetesKriterium um die gestreuten Myonen von den Strahlmyonen zutrennen, deshalb muss der Energieverlust des Myons verwendetwerden. Der sog. Energieverlusttrigger besteht aus Paarenvon Plastikszintillatorhodoskopen mit exzellenter Zeitaufloesung, die zusammen mit einer selbstentwickeltenschnellen Koinzidenzelektronik eine Koinzidenzzeit vonweniger als 3ns möglich macht. Fuer den gleichzeitigenNachweis der Hadronen wurden die beiden Hadronkalorimeterdes COMPASS--Spektrometers mit einer eigens entwickeltenElektronik versehen.
Resumo:
Leber’s hereditary optic neuropathy (LHON) and Autosomal Dominant Optic Atrophy (ADOA) are the two most common inherited optic neuropathies and both are the result of mitochondrial dysfunctions. Despite the primary mutations causing these disorders are different, being an mtDNA mutation in subunits of complex I in LHON and defects in the nuclear gene encoding the mitochondrial protein OPA1 in ADOA, both pathologies share some peculiar features, such a variable penetrance and tissue-specificity of the pathological processes. Probably, one of the most interesting and unclear aspect of LHON is the variable penetrance. This phenomenon is common in LHON families, most of them being homoplasmic mutant. Inter-family variability of penetrance may be caused by nuclear or mitochondrial ‘secondary’ genetic determinants or other predisposing triggering factors. We identified a compensatory mechanism in LHON patients, able to distinguish affected individuals from unaffected mutation carriers. In fact, carrier individuals resulted more efficient than affected subjects in increasing the mitochondrial biogenesis to compensate for the energetic defect. Thus, the activation of the mitochondrial biogenesis may be a crucial factor in modulating penetrance, determining the fate of subjects harbouring LHON mutations. Furthermore, mtDNA content can be used as a molecular biomarker which, for the first time, clearly differentiates LHON affected from LHON carrier individuals, providing a valid mechanism that may be exploited for development of therapeutic strategies. Although the mitochondrial biogenesis gained a relevant role in LHON pathogenesis, we failed to identify a genetic modifying factor for the variable penetrance in a set of candidate genes involved in the regulation of this process. A more systematic high-throughput approach will be necessary to select the genetic variants responsible for the different efficiency in activating mitochondrial biogenesis. A genetic modifying factor was instead identified in the MnSOD gene. The SNP Ala16Val in this gene seems to modulate LHON penetrance, since the Ala allele in this position significantly predisposes to be affected. Thus, we propose that high MnSOD activity in mitochondria of LHON subjects may produce an overload of H2O2 for the antioxidant machinery, leading to release from mitochondria of this radical and promoting a severe cell damage and death ADOA is due to mutation in the OPA1 gene in the large majority of cases. The causative nuclear defects in the remaining families with DOA have not been identified yet, but a small number of families have been mapped to other chromosomal loci (OPA3, OPA4, OPA5, OPA7, OPA8). Recently, a form of DOA and premature cataract (ADOAC) has been associated to pathogenic mutations of the OPA3 gene, encoding a mitochondrial protein. In the last year OPA3 has been investigated by two different groups, but a clear function for this protein and the pathogenic mechanism leading to ADOAC are still unclear. Our study on OPA3 provides new information about the pattern of expression of the two isoforms OPA3V1 and OPA3V2, and, moreover, suggests that OPA3 may have a different function in mitochondria from OPA1, the major site for ADOA mutations. In fact, based on our results, we propose that OPA3 is not involved in the mitochondrial fusion process, but, on the contrary, it may regulate mitochondrial fission. Furthermore, at difference from OPA1, we excluded a role for OPA3 in mtDNA maintenance and we failed to identify a direct interaction between OPA3 and OPA1. Considering the results from overexpression and silencing of OPA3, we can conclude that the overexpression has more drastic consequences on the cells than silencing, suggesting that OPA3 may cause optic atrophy via a gain-of-function mechanism. These data provide a new starting point for future investigations aimed at identifying the exact function of OPA3 and the pathogenic mechanism causing ADOAC.
Resumo:
In this thesis, my work in the Compact Muon Solenoid (CMS) experiment on the search for the neutral Minimal Supersymmetric Standard Model (MSSM) Higgs decaying into two muons is presented. The search is performed on the full data collected during the years 2011 and 2012 by CMS in proton-proton collisions at CERN Large Hadron Collider (LHC). The MSSM is explored within the most conservative benchmark scenario, m_h^{max}, and within its modified versions, m_h^{mod +} and m_h^{mod -}. The search is sensitive to MSSM Higgs boson production in association with a b\bar{b} quark pair and to the gluon-gluon fusion process. In the m_h^{max} scenario, the results exclude values of tanB larger than 15 in the m_A range 115-200 GeV, and values of tanB greater than 30 in the m_A range up to 300 GeV. There are no significant differences in the results obtained within the three different scenarios considered. Comparisons with other neutral MSSM Higgs searches are shown.