920 resultados para Full compensation
Resumo:
This paper presents a methodology to address reactive power compensation using Evolutionary Particle Swarm Optimization (EPSO) technique programmed in the MATLAB environment. The main objective is to find the best operation point minimizing power losses with reactive power compensation, subjected to all operational constraints, namely full AC power flow equations, active and reactive power generation constraints. The methodology has been tested with the IEEE 14 bus test system demonstrating the ability and effectiveness of the proposed approach to handle the reactive power compensation problem.
Resumo:
This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.
Resumo:
Different interferometric techniques were developed last decade to obtain full field, quantitative, and absolute phase imaging, such as phase-shifting, Fourier phase microscopy, Hilbert phase microscopy or digital holographic microscopy (DHM). Although, these techniques are very similar, DHM combines several advantages. In contrast, to phase shifting, DHM is indeed capable of single-shot hologram recording allowing a real-time absolute phase imaging. On the other hand, unlike to Fourier phase or Hilbert phase microscopy, DHM does not require to record in focus images of the specimen on the digital detector (CCD or CMOS camera), because a numerical focalization adjustment can be performed by a numerical wavefront propagation. Consequently, the depth of view of high NA microscope objectives is numerically extended. For example, two different biological cells, floating at different depths in a liquid, can be focalized numerically from the same digital hologram. Moreover, the numerical propagation associated to digital optics and automatic fitting procedures, permits vibrations insensitive full- field phase imaging and the complete compensation for a priori any image distortion or/and phase aberrations introduced for example by imperfections of holders or perfusion chamber. Examples of real-time full-field phase images of biological cells have been demonstrated. ©2008 COPYRIGHT SPIE
Resumo:
"Digest of decisions by Workmen's Compensation Board in selected cases, full text of court and board decisions under the Disability benefits law and Volunteer firemen's law, referee bulletins, interpretive bulletins and new rules and regulations."
Resumo:
Caption title.
Resumo:
Digital back-propagation (DBP) has recently been proposed for the comprehensive compensation of channel nonlinearities in optical communication systems. While DBP is attractive for its flexibility and performance, it poses significant challenges in terms of computational complexity. Alternatively, phase conjugation or spectral inversion has previously been employed to mitigate nonlinear fibre impairments. Though spectral inversion is relatively straightforward to implement in optical or electrical domain, it requires precise positioning and symmetrised link power profile in order to avail the full benefit. In this paper, we directly compare ideal and low-precision single-channel DBP with single-channel spectral-inversion both with and without symmetry correction via dispersive chirping. We demonstrate that for all the dispersion maps studied, spectral inversion approaches the performance of ideal DBP with 40 steps per span and exceeds the performance of electronic dispersion compensation by ~3.5 dB in Q-factor, enabling up to 96% reduction in complexity in terms of required DBP stages, relative to low precision one step per span based DBP. For maps where quasi-phase matching is a significant issue, spectral inversion significantly outperforms ideal DBP by ~3 dB.
Resumo:
This reported work significantly extends the reach of 10Gbit/s on-off keying singlemode fibre (SMF) transmission using full-field based electronic dispersion compensation (EDC) to 900 km. In addition, the EDC balances the complexity and the adaptation capability by employing a simple dispersive transmission line with static parameters for coarse dispersion compensation and 16-state maximum likelihood sequence estimation with Gaussian approximation based channel training for adaptive impairment trimming. Improved adaptation times of less than 400 ns for a bit error rate target of 10-3 over distances ranging from 0 to 900 km are reported.
Resumo:
We numerically investigate the combination of full-field detection and feed-forward equalizer (FFE) for adaptive chromatic dispersion compensation up to 2160 km in a 10 Gbit/s on-off keyed optical transmission system. The technique, with respect to earlier reports, incorporates several important implementation modules, including the algorithm for adaptive equalization of the gain imbalance between the two receiver chains, compensation of phase misalignment of the asymmetric Mach-Zehnder interferometer, and simplified implementation of field calculation. We also show that in addition to enabling fast adaptation and simplification of field calculation, full-field FFE exhibits enhanced tolerance to the sampling phase misalignment and reduced sampling rate when compared to the full-field implementation using a dispersive transmission line.
Resumo:
We numerically investigate the combination of full-field detection and feed-forward equalizer (FFE) for adaptive chromatic dispersion compensation up to 2160 km in a 10 Gbit/s on-off keyed optical transmission system. The technique, with respect to earlier reports, incorporates several important implementation modules, including the algorithm for adaptive equalization of the gain imbalance between the two receiver chains, compensation of phase misalignment of the asymmetric Mach-Zehnder interferometer, and simplified implementation of field calculation. We also show that in addition to enabling fast adaptation and simplification of field calculation, full-field FFE exhibits enhanced tolerance to the sampling phase misalignment and reduced sampling rate when compared to the full-field implementation using a dispersive transmission line.
Resumo:
This reported work significantly extends the reach of 10Gbit/s on-off keying singlemode fibre (SMF) transmission using full-field based electronic dispersion compensation (EDC) to 900 km. In addition, the EDC balances the complexity and the adaptation capability by employing a simple dispersive transmission line with static parameters for coarse dispersion compensation and 16-state maximum likelihood sequence estimation with Gaussian approximation based channel training for adaptive impairment trimming. Improved adaptation times of less than 400 ns for a bit error rate target of 10-3 over distances ranging from 0 to 900 km are reported.
Resumo:
In this paper, we numerically investigate the impact of polarisation mode dispersion on the efficiency of compensation of nonlinear transmission penalties for systems employing one of more inline phase conjugation devices. We will show that reducing the spacing between phase conjugations allows for significantly improved performance in the presence polarisation mode dispersion or a significant relaxation in the acceptable level of polarization mode dispersion. We show that these results are consistent with previously presented full statistical analysis of nonlinear transmission appropriately adjusted for the reduced section length undergoing compensation.
Resumo:
A novel versatile digital signal processing (DSP)-based equalizer using support vector machine regression (SVR) is proposed for 16-quadrature amplitude modulated (16-QAM) coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and experimentally compared to traditional DSP-based deterministic fiber-induced nonlinearity equalizers (NLEs), namely the full-field digital back-propagation (DBP) and the inverse Volterra series transfer function-based NLE (V-NLE). For a 40 Gb/s 16-QAM CO-OFDM at 2000 km, SVR-NLE extends the optimum launched optical power (LOP) by 4 dB compared to V-NLE by means of reduction of fiber nonlinearity. In comparison to full-field DBP at a LOP of 6 dBm, SVR-NLE outperforms by ∼1 dB in Q-factor. In addition, SVR-NLE is the most computational efficient DSP-NLE.
Resumo:
The different oxidation states of chromium allow its bulk oxide form to be reducible, facilitating the oxygen vacancy formation process, which is a key property in applications such as catalysis. Similar to other useful oxides such as TiO2, and CeO2, the effect of substitutional metal dopants in bulk Cr2O3 and its effect on the electronic structure and oxygen vacancy formation are of interest, particularly in enhancing the latter. In this paper, density functional theory (DFT) calculations with a Hubbard + U correction (DFT+U) applied to the Cr 3d and O 2p states, are carried out on pure and metal-doped bulk Cr2O3 to examine the effect of doping on the electronic and geometric structure. The role of dopants in enhancing the reducibility of Cr2O3 is examined to promote oxygen vacancy formation. The dopants are Mg, Cu, Ni, and Zn, which have a formal +2 oxidation state in their bulk oxides. Given this difference in host and, dopant oxidation states, we show that to predict the correct ground state two metal dopants charge compensated with an oxygen vacancy are required. The second oxygen atom removed is termed "the active" oxygen vacancy and it is the energy required to remove this atom that is related to the reduction process. In all cases, we find that substitutional doping improves the oxygen vacancy formation of bulk Cr2O3 by lowering the energy cost.
Resumo:
The rate of non-full-time faculty members has increased rapidly over the last decade (Louis, 2009; MacKay, 2014; Meranze & Newfield, 2013), as the post-secondary landscape of fluctuating enrolment, fiscal and operational challenges, and the requirement to hire specialized skill sets have required institutions to rely heavily on this demographic. In the Ontario Colleges of Applied Arts and Technology (CAATs) system, institutions have tried to preserve and enhance educational quality with fewer resources through greater reliance on non-full-time faculty. The purpose of this study was to explore the perceptions and experiences of teaching and support of non-full-time faculty at one Eastern Ontario college. Employing a narrative inquiry methodology, data were collected from four participants through their writing three individual letters at the end of each month and participating in one interview at the end of the contract period. The data were analyzed and coded. This analysis revealed five themes: motivation, connection and engagement, compensation, teaching and development, and performance evaluation. Differences in the participants’ perceptions tended to reflect divergences across career stage: retired versus early career. The compensation package provided to non-full-time faculty was considered inadequate for those in the early career stage, especially comparing it to that of full-time faculty. In addition, the amount of previous teaching experience was an important indicator for the appropriate level of teaching resources and support provided by the institution. The newer faculty members required a higher level of support to combat feelings of role isolation. The temporary nature of the role made it difficult to establish a feeling of a strong connection to the institution and subsequently opportunities to engage further to deepen the relationship. Despite these differences across participants, autonomous motivators were consistent across all narratives, as participants expressed their desire to teach and share their knowledge to help students achieve their goals. Participants concluded their narratives by sharing future advice for faculty interested in pursuing the role. The narratives provided areas for improvement that would help increase the level of job satisfaction for non-full-time college faculty members: (a) establishing a more thorough performance evaluation process to align with institutional supports, (b) offering more diverse teaching resources to better prepare faculty and enhance teaching practices, (c) overhauling the compensation package to better recognize the amount of time and effort spent in the role and aligning with the compensation provided to full-time faculty, and (d) including rewards and incentives as part of the compensation package to enhance the level of commitment and availability for the role. These changes might well increase the job satisfaction and improve the retention of non-full-time faculty members.
Resumo:
In order to cope up with the ever increasing demand for larger transmission bandwidth, Radio over Fiber technology is a very beneficial solution. These systems are expected to play a major role within future fifth generation wireless networks due to their inherent capillary distribution properties. Nonlinear compensation techniques are becoming increasingly important to improve the performance of telecommunication channels by compensating for channel nonlinearities. Indeed, significant bounds on the technology usability and performance degradation occur due to nonlinear characteristics of optical transmitter, nonlinear generation of spurious frequencies, which, in the case of RoF links exploiting Directly Modulated Lasers , has the combined effect of laser chirp and optical fiber dispersion among its prevailing causes. The purpose of the research is to analyze some of the main causes of harmonic and intermodulation distortion present in Radio over Fiber (RoF) links, and to suggest a solution to reduce their effects, through a digital predistortion technique. Predistortion is an effective and interesting solution to linearize and this allows to demonstrate that the laser’s chirp and the optical fiber’s dispersion are the main causes which generate harmonic distortion. The improvements illustrated are only theoretical, based on a feasibility point of view. The simulations performed lead to significant improvements for short and long distances of radio over fiber link lengths. The algorithm utilized for simulation has been implemented on MATLAB. The effects of chirp and fiber nonlinearity in a directly modulated fiber transmission system are investigated by simulation, and a cost effective and rather simple technique for compensating these effects is discussed. A detailed description of its functional model is given, and its attractive features both in terms of quality improvement of the received signal, and cost effectiveness of the system are illustrated.