991 resultados para Frequency regulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Regulation of skeletal muscle mass is highly dependent on contractile loading. The purpose of this study was to examine changes in growth factor and inflammatory pathways following high-frequency resistance training. METHODS: Using a novel design in which male Sprague-Dawley rats undertook a "stacked" resistance training protocol designed to generate a summation of transient exercise-induced signaling responses (four bouts of three sets × 10 repetitions of squat exercise, separated by 3 h of recovery), we determined the effects of high training frequency on signaling pathways and transcriptional activity regulating muscle mass. RESULTS: The stacked training regimen resulted in acute suppression of insulin-like growth factor 1 mRNA abundance (P < 0.05) and Akt phosphorylation (P < 0.05), an effect that persisted 48 h after the final training bout. Conversely, stacked training elicited a coordinated increase in the expression of tumor necrosis factor alpha, inhibitor kappa B kinase alpha/beta activity (P < 0.05), and p38 mitogen-activated protein kinase phosphorylation (P < 0.05) at 3 h after each training bout. In addition, the stacked series of resistance exercise bouts induced an increase in p70 S6 kinase phosphorylation 3 h after bouts ×3 and ×4, independent of the phosphorylation state of Akt. CONCLUSIONS: Our results indicate that high resistance training frequency extends the transient activation of inflammatory signaling cascades, concomitant with persistent suppression of key mediators of anabolic responses. We provide novel insights into the effects of the timing of exercise-induced overload and recovery on signal transduction pathways and transcriptional activity regulating skeletal muscle mass in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a continuation of earlier studies on the evolution of infinite populations of haploid genotypes within a genetic algorithm framework. We had previously explored the evolutionary consequences of the existence of indeterminate—“plastic”—loci, where a plastic locus had a finite probability in each generation of functioning (being switched “on”) or not functioning (being switched “off”). The relative probabilities of the two outcomes were assigned on a stochastic basis. The present paper examines what happens when the transition probabilities are biased by the presence of regulatory genes. We find that under certain conditions regulatory genes can improve the adaptation of the population and speed up the rate of evolution (on occasion at the cost of lowering the degree of adaptation). Also, the existence of regulatory loci potentiates selection in favour of plasticity. There is a synergistic effect of regulatory genes on plastic alleles: the frequency of such alleles increases when regulatory loci are present. Thus, phenotypic selection alone can be a potentiating factor in a favour of better adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the general population, the timing of puberty is normally distributed. This variation is determined by genetic and environmental factors, but the exact mechanisms underlying these influences remain elusive. The purpose of this study was to gain insight into genetic regulation of pubertal timing. Contributions of genetic versus environmental factors to the normal variation of pubertal timing were explored in twins. Familial occurrence and inheritance patterns of constitutional delay of growth and puberty, CDGP (a variant of normal pubertal timing), were studied in pedigrees of patients with this condition. To ultimately detect genes involved in the regulation of pubertal timing, genetic loci conferring susceptibility to CDGP were mapped by linkage analysis in the same family cohort. To subdivide the overall phenotypic variance of pubertal timing into genetic and environmental components, genetic modeling based on monozygous twins sharing 100% and dizygous twins sharing 50% of their genes was used in 2309 girls and 1828 boys from the FinnTwin 12-17 study. The timing of puberty was estimated from height growth, i.e. change in the relative height between the age when pubertal growth velocity peaks in the general population and adulthood. This reflects the percentage of adult height achieved at the average peak height velocity age, and thus, pubertal timing. Boys and girls diagnosed with CDGP were gathered through medical records from six pediatric clinics in Finland. First-degree relatives of the probands were invited to participate by letter; altogether, 286 families were recruited. When possible, families were extended to include also second-, third-, or fourth-degree relatives. The timing of puberty in all family members was primarily assessed from longitudinal growth data. Delayed puberty was defined by onset of pubertal growth spurt or peak height velocity taking place 1.5 (relaxed criterion) or 2 SD (strict criterion) beyond the mean. If growth data were unavailable, pubertal timing was based on interviews. In this case, CDGP criteria were set as having undergone pubertal development more than 2 (strict criterion) or 1.5 years (relaxed criterion) later than their peers, or menarche after 15 (strict criterion) or 14 years (relaxed criterion). Familial occurrence of strict CDGP was explored in families of 124 patients (95 males and 29 females) from two clinics in Southern Finland. In linkage analysis, we used relaxed CDGP criteria; 52 families with solely growth data-based CDGP diagnoses were selected from all clinics. Based on twin data, genetic factors explain 86% and 82% of the variance of pubertal timing in girls and boys, respectively. In families, 80% of male and 76% of female probands had affected first-degree relatives, in whom CDGP was 15 times more common than the expected (2.5%). In 74% (17 of 23) of the extended families with only one affected parent, familial patterns were consistent with autosomal dominant inheritance. By using 383 multiallelic markers and subsequently fine-mapping with 25 additional markers, significant linkage for CDGP was detected to the pericentromeric region of chromosome 2, to 2p13-2q13 (multipoint HLOD 4.44, α 0.41). The findings of the large twin study imply that the vast majority of the normal variation of pubertal timing is attributed to genetic effects. Moreover, the high frequency of dominant inheritance patterns and the large number of affected relatives of CDGP patients suggest that genetic factors also markedly contribute to constitutional delay of puberty. Detection of the locus 2p13-2q13 in the pericentromeric region of chromosome 2 associating with CDGP is one step towards unraveling the genes that determine pubertal timing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High voltage power supplies for radar applications are investigated, which are subjected to pulsed load (125 kHz and 10% duty cycle) with stringent specifications (<0.01% regulation, efficiency>85%, droop<0.5 V/micro-sec.). As good regulation and stable operation requires the converter to be switched at much higher frequency than the pulse load frequency, transformer poses serious problems of insulation failure and higher losses. Few converter topologies are proposed to tackle these problems. A study is made regarding the beat frequency oscillations that may exist with pulsed loading. It is illustrated with respect to the proposed converter topologies. Methods are proposed to eliminate or minimize these oscillations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large digital chips use a significant amount of energy to distribute a multi-GHz clock. By discharging the clock network to ground every cycle, the energy stored in this large capacitor is wasted. Instead, the energy can be recovered using an on-chip DC-DC converter. This paper investigates the integration of two DC-DC converter topologies, boost and buck-boost, with a high-speed clock driver. The high operating frequency significantly shrinks the required size of the L and C components so they can be placed on-chip; typical converters place them off-chip. The clock driver and DC-DC converter are able to share the entire tapered buffer chain, including the widest drive transistors in the final stage. To achieve voltage regulation, the clock duty cycle must be modulated; implying only single-edge-triggered flops should be used. However, this minor drawback is eclipsed by the benefits: by recovering energy from the clock, the output power can actually exceed the additional power needed to operate the converter circuitry, resulting in an effective efficiency greater than 100%. Furthermore, the converter output can be used to operate additional power-saving features like low-voltage islands or body bias voltages. ©2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Participation in home, school and community is important for all children; and little is known about the frequency of participation of disabled children. Frequency of participation is a valuable outcome measure for evaluating habilitation programmes for disabled children and for planning social and health services.

We investigated how frequency of participation varied between children with cerebral palsy and the general population; and examined variation across countries to understand better how the environmental factors such as legislation, public attitudes and regulation in different countries might influence participation.

We undertook a multi-centre, population-based study in children with and without cerebral palsy. Working from the Life-H instrument, we developed a questionnaire to capture frequency of participation in 8–12-year-old children. In nine regions of seven European countries, parents of 813 children with cerebral palsy and 2939 children from the general populations completed the questionnaire.

Frequency of participation for each question was dichotomised about the median; multivariable logistic regressions were carried out.

In the general population, frequency of participation varied between countries. Children with cerebral palsy participated less frequently in many but not all areas of everyday life, compared with children from the general population. There was regional variation in the domains with reduced participation and in the magnitude of the differences. We discuss how this regional variation might be explained by the different environments in which children live. Attending a special school or class was not associated with further reduction in participation in most areas of everyday life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been postulated that cytokine allele frequencies are gender and perhaps geographically-specific. Cytokine release is crucial in the regulation of the type and magnitude of the immune response. This study observed no differences in the frequency of cytokine promoter polymorphisms associated with variant levels of expression in patients with CIF and a non-CF population of Northern Ireland. (c) 2007 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The t(11; 17)(q23;q21) translocation is associated with a retinoic acid (RA)-insensitive form of acute promyelocytic leukemia (APL), involving the production of reciprocal fusion proteins, promyelocytic leukemia zinc finger-retinoic acid receptor alpha (PLZF-RAR alpha) and RAR alpha-PLZF. Using a combination of chromatin immuno-precipitation promotor arrays (ChIP-chip) and gene expression profiling, we identify novel, direct target genes of PLZF-RAR alpha that tend to be repressed in APL compared with other myeloid leukemias, supporting the role of PLZF-RAR alpha as an aberrant repressor in APL. In primary murine hematopoietic progenitors, PLZF-RAR alpha promotes cell growth, and represses Dusp6 and Cdkn2d, while inducing c-Myc expression, consistent with its role in leukemogenesis. PLZF-RAR alpha binds to a region of the c-MYC promoter overlapping a functional PLZF site and antagonizes PLZF-mediated repression, suggesting that PLZF-RAR alpha may act as a dominant-negative version of PLZF by affecting the regulation of shared targets. RA induced the differentiation of PLZF-RAR alpha-transformed murine hematopoietic cells and reduced the frequency of clonogenic progenitors, concomitant with c-Myc down-regulation. Surviving RA-treated cells retained the ability to be replated and this was associated with sustained c-Myc expression and repression of Dusp6, suggesting a role for these genes in maintaining a self-renewal pathway triggered by PLZF-RAR alpha. (Blood. 2009; 114: 5499-5511)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Diabetic nephropathy (DN) is a microvascular complication of diabetes. Members of the WNT/ β-catenin pathways have been implicated in interstitial fibrosis and glomerular sclerosis, characteristic hallmarks of DN. These processes are controlled, in part, by transcription factors (TFs), proteins which bind to gene promoter regions attenuating their regulation. We sought to identify predicted cis-acting transcription factor binding sites (TFBS) over-represented within the promoter regions of WNT pathway members compared to genes across the genome.Methods: We assessed the frequency of 62 TFBS motifs from the JASPAR databases on 65 WNT pathway genes. P-values were estimated on the hypergeometric distribution for each TF. Gene expression profiles of enriched motifs were examined from DN-related datasets to assess clinical significance.Results: TFBS motifs transcription factor AP-2 alpha (TFAP2A), myeloid zinc finger 1 (MZF1), and specificity protein 1 (SP1) were significantly enriched within WNT pathway genes (P-values<6.83x10-29, 1.34x10-11 and 3.01x10-6 respectively). MZF1 gene expression was significantly increased in DN in a whole kidney dataset (fold change = 1.16; 16% increase; P = 0.03). TFAP2A gene expression was decreased in an independent dataset (fold change = -1.02; P = 0.03). SP1 was not differentially expressed in any datasets examined.Conclusions: Three TFBS profiles are significantly enriched within the WNT pathway genes examined highlighting the use of in silico analyses for identifying key regulators of this pathway. Modification of TF binding to gene promoter regions involved in DN pathology may limit progression, making refinement of targeted therapeutic strategies possible through clearer delineation of their role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Permanece por esclarecer como a via de sinalização do cAMP modula a exocitose regulada. Os principais objetivos deste trabalho foram: i) avaliar o efeito do cAMP nos eventos exocitóticos, nas propriedades dos poros de fusão e na secreção hormonal; ii) perceber o impacto da sinalização por cAMP-HCN na exocitose e nas propriedades do poro de fusão; e iii) estudar as propriedades do poro de fusão na presença de um agente neurotóxico comum, como o alumínio. Lactotrofos, isolados a partir da hipófise anterior de ratos Wistar machos, foram usados como modelo celular. Os eventos unitários de fusão exocitótica e a prolactina (PRL) libertada foram avaliados, respetivamente, em ensaios eletrofisiológicos efectuados segundo a técnica de contacto hermético no modo sobre a célula aderida à pipeta porta-elétrodo e com recurso a métodos imunológicos de deteção. Os níveis intracelulares de cAMP foram aumentados por 3-isobutil-1-metilxantina (IMBX), forscolina e N6,2'-O-dibutiril adenosina- 3',5'-monofosfato cíclico (dbcAMP). A expressão dos canais HCN foi determinada por Western-blot, qRT-PCR e imunocitoquímica em combinação com microscopia confocal. Culturas primárias de lactotrofos foram também transfetadas com DNA plasmídico que codifica HCN2 juntamente com a proteína-verde-fluorescente e um agente farmacológico foi usado para avaliar o efeito de cAMP-HCN na exocitose. Observou-se que os lactotrofos responderam à forscolina e ao dbcAMP libertando PRL de um modo bifásico e dependente da concentração, uma vez que a secreção aumentou e diminuiu, respectivamente, na gama de baixas e altas concentrações. Os compostos que elevaram os níveis de cAMP aumentaram os eventos transientes e impediram a fusão completa. Além disso, o dbcAMP promoveu o aparecimento de eventos exocitóticos transientes de elevada periodicidade, cujos poros de fusão, de maior diâmetro, se mativeram abertos durante mais tempo. A expressão das quatro isoformas de HCN foi confirmada nos lactotrofos ao nível do mRNA e, tal como no coração, rim e hipófise, o mais abundante codifica a isoforma HCN2. Nos lactotrofos com sobre-expressão desta isoforma, o dbcAMP não só aumentou a frequência dos eventos transientes e a condutância dos poros, mas também a frequência dos eventos de fusão completa. Enquanto o bloqueador dos canais HCN, ZD7288, reduziu a frequência dos eventos transientes e de fusão completa desencadeados por dbcAMP e diminuiu o diâmetro dos poros de fusão. A simultânea diminuição da libertação de PRL, da frequência dos eventos transientes e do diâmetro dos poros de fusão representaram as principais alterações observados após pré-tratamento dos lactotrofos com concentração micromolar de alumínio. Em conclusão, os resultados demonstram que elevados níveis de cAMP reduzem a secreção de PRL devido à estabilização dos poros de fusão no estado de maior abertura. Além disso, a via de sinalização cAMP-HCN afecta a actividade exocitótica e modifica as propriedades dos poros de fusão, que parecem ser igualmente importantes na citotoxicidade induzida por alumínio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ATP binding cassette (ABC) and solute carrier (SLC) transporters are responsible for the majority of the transcellular movement of various substrates, including drugs, among epithelial cells. Despite the well characterized regulation of influx (SLC) and efflux (ABC) transporters by endogenous mediators, such as inflammatory cytokines, little is known about how changes in oxygen levels may affect expression of these transporters. In this study we showed that the expression of SLC22A4, SLC22A5, SLC22A1, SLC02B1, SLC10A2, ABCC2 and ABCC3 transporters is upregulated by hypoxia in HT29 colon carcinoma cells, but not in HepG2 hepatocarcinoma cells. Moreover, OCTN1 (SLC22A4), OCT1 (SLC22A1) and OATP-B (SLC02B1) transporter expression is also induced by inflammatory cytokines but in a smaller extent than in hypoxia. Furthermore our experiments indicate that there is no cross talk between HIF-1 and NF-κB pathways in HT-29 cells, but these two pathways act simultaneously activating common genes, such as, some SLC and ABC transporters. Our preliminary results from studies with an in vivo murine model of colitis, suggest that HIF-1is stabilized and OCTN1 is strongly induced during severe inflammation, which can be relevant for a recovery from the inflammatory process. We have also been interested in the distribution of HIF-1α variants among different ethnic groups as well as their contribution for cancer risk. Thus, we have demonstrated that there is an ethnicity-related variation in the frequency of the C1772T (P582S) single nucleotide polymorphism (SNP) in the HIF-1α gene. Furthermore, we performed a case-control study in a breast cancer population and our results suggest that there is no association between this SNP or the rare G1790A (A588T) SNP and the incidence of breast cancer. Taken together, the results obtained in this study contribute to a better knowledge of drug influx and efflux during hypoxia and inflammation as well as to the understanding of the pharmacogenetic variability of the HIF-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular polarity concerns the spatial asymmetric organization of cellular components and structures. Such organization is important not only for biological behavior at the individual cell level, but also for the 3D organization of tissues and organs in living organisms. Processes like cell migration and motility, asymmetric inheritance, and spatial organization of daughter cells in tissues are all dependent of cell polarity. Many of these processes are compromised during aging and cellular senescence. For example, permeability epithelium barriers are leakier during aging; elderly people have impaired vascular function and increased frequency of cancer, and asymmetrical inheritance is compromised in senescent cells, including stem cells. Here, we review the cellular regulation of polarity, as well as the signaling mechanisms and respective redox regulation of the pathways involved in defining cellular polarity. Emphasis will be put on the role of cytoskeleton and the AMP-activated protein kinase pathway. We also discuss how nutrients can affect polarity-dependent processes, both by direct exposure of the gastrointestinal epithelium to nutrients and by indirect effects elicited by the metabolism of nutrients, such as activation of antioxidant response and phase-II detoxification enzymes through the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In summary, cellular polarity emerges as a key process whose redox deregulation is hypothesized to have a central role in aging and cellular senescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUMO:O glicosilfosfatidilinositol (GPI) é um complexo glicolipídico utlizado por dezenas de proteínas, o qual medeia a sua ancoragem à superfície da célula. Proteínas de superfície celular ancoradas a GPI apresentam várias funções essenciais para a manutenção celular. A deficiência na síntese de GPI é o que caracteriza principalmente a deficiência hereditária em GPI, um grupo de doenças autossómicas raras que resultam de mutações nos genes PIGA, PIGL, PIGM, PIGV, PIGN, PIGO e PIGT, os quais sao indispensáveis para a biossíntese do GPI. Uma mutação pontual no motivo rico em GC -270 no promotor de PIGM impede a ligação do factor de transcrição (FT) Sp1 à sua sequência de reconhecimento, impondo a compactação da cromatina, associada à hipoacetilação de histonas, e consequentemente, impedindo a transcrição de PIGM. Desta forma, a adição da primeira manose ao GPI é comprometida, a síntese de GPI diminui assim como as proteínas ligadas a GPI à superficie das células. Pacientes com Deficiência Hereditária em GPI-associada a PIGM apresentam trombose e epilesia, e ausência de hemólise intravascular e anemia, sendo que estas duas últimas características definem a Hemoglobinúria Paroxística Nocturna (HPN), uma doença rara causada por mutações no gene PIGA. Embora a mutação que causa IGD seja constitutiva e esteja presente em todos os tecidos, o grau de deficiência em GPI varia entre células do mesmo tecido e entre células de tecidos diferentes. Por exemplo nos granulócitos e linfócitos B a deficiência em GPI é muito acentuada mas nos linfócitos T, fibroblastos, plaquetas e eritrócitos é aproximadamente normal, daí a ausência de hemólise intravascular. Os eventos transcricionais que estão na base da expressão diferencial da âncora GPI nas células hematopoiéticas são desconhecidos e constituem o objectivo geral desta tese. Em primeiro lugar, os resultados demonstraram que os níveis de PIGM mRNA variam entre células primárias hematopoiéticas normais. Adicionalmente, a configuração dos nucleossomas no promotor de PIGM é mais compacta em células B do que em células eritróides e tal está correlacionado com os níveis de expressão de PIGM, isto é, inferior nas células B. A presença de vários motivos de ligação para o FT específico da linhagem megacariocítica-eritróide GATA-1 no promotor de PIGM sugeriu que GATA-1 desempenha um papel regulador na sua transcrição. Os resultados mostraram que muito possivelmente GATA-1 desempenha um papel repressor em vez de activador da expressão de PIGM. Resultados preliminares sugerem que KLF1, um factor de transcrição restritamente eritróide, regula a transcrição de PIGM independentemente do motivo -270GC. Em segundo lugar, a investigação do papel dos FTs Sp demonstrou que Sp1 medeia directamente a transcrição de PIGM em ambas as células B e eritróide. Curiosamente, ao contrário do que acontece nas células B, em que a transcrição de PIGM requer a ligação do FT geral Sp1 ao motivo -270GC, nas células eritróides Sp1 regula a transcrição de PIGM ao ligar-se a montante e não ao motivo -270GC. Para além disso, demonstrou-se que Sp2 não é um regulador directo da transcrição de PIGM quer nas células B quer nas células eritróides. Estes resultados explicam a ausência de hemólise intravascular nos doentes com IGD associada a PIGM, uma das principais características que define a HPN. Por último, resultados preliminares mostraram que a repressão da transcrição de PIGM devida à mutação patogénica -270C>G está associada com a diminuição da frequência de interacções genómicas em cis entre PIGM e os seus genes “vizinhos”, sugerindo adicionalmente que a regulação de PIGM e desses genes é partilhada. No seu conjunto, os resultados apresentados nesta tese contribuem para o conhecimento do controlo transcricional de um gene housekeeping, específico-detecido, por meio de FTs genéricos e específicos de linhagem.-------------ABSTRACTC: Glycosylphosphatidylinositol (GPI) is a complex glycolipid used by dozens of proteins for cell surface anchoring. GPI-anchored proteins have various functions that are essential for the cellular maintenance. Defective GPI biosynthesis is the hallmark of inherited GPI deficiency (IGD), a group of rare autosomal diseases caused by mutations in PIGA, PIGL, PIGM, PIGV, PIGN, PIGO and PIGT, all genes indispensable for GPI biosynthesis. A point mutation in the -270GC-rich box in the core promoter of PIGM disrupts binding of the transcription factor (TF) Sp1 to it, imposing nucleosome compaction associated with histone hypoacetylation, thus abrogating transcription of PIGM. As a consequence of PIGM transcriptional repression, addition of the first mannose residue onto the GPI core and thus GPI production are impaired; and expression of GPI-anchored proteins on the surface of cells is severely impaired. Patients with PIGM-associated IGD suffer from life-threatening thrombosis and epilepsy but not intravascular haemolysis and anaemia, two defining features of paroxysmal nocturnal haemoglobinuria (PNH), a rare disease caused by somatic mutations in PIGA. Although the disease-causing mutation in IGD is constitutional and present in all tissues, the degree of GPI deficiency is variable and differs between cells of the same and of different tissues. Accordingly, GPI deficiency is severe in granulocytes and B cells but mild in T cells, fibroblasts, platelets and erythrocytes, hence the lack of intravascular haemolysis.The transcriptional events underlying differential expression of GPI in the haematopoietic cells of PIG-M-associated IGD are not known and constitute the general aim of this thesis. Firstly, I found that PIGM mRNA levels are variable amongst normal primary haematopoietic cells. In addition, the nucleosome configuration in the promoter of PIGM is more compacted in B cells than in erythroid cells and this correlated with the levels of PIGM mRNA expression, i.e., lower in B cells. The presence of several binding sites for GATA-1, a mega-erythroid lineage-specific transcription factor (TF), at the PIGM promoter suggested that GATA-1 has a role on PIGM transcription. My results showed that GATA-1 in erythroid cells is most likely a repressor rather than an activator of PIGM expression. Preliminary data suggested that KLF1, an erythroid-specific TF, regulates PIGM transcription but independently of the -270GC motif. Secondly, investigation of the role of the Sp TFs showed that Sp1 directly mediates PIGM transcriptional regulation in both B and erythroid cells. However, unlike in B cells in which active PIGM transcription requires binding of the generic TF Sp1 to the -270GC-rich box, in erythroid cells, Sp1 regulates PIGM transcription by binding upstream of but not to the -270GC-rich motif. Additionally, I showed that Sp2 is not a direct regulator of PIGM transcription in B and erythroid cells. These findings explain lack of intravascular haemolysis in PIGM-associated IGD, a defining feature of PNH. Lastly, preliminary work shows that transcriptional repression of PIG-M by the pathogenic -270C>G mutation is associated with reduced frequency of in cis genomic interactions between PIGM and its neighbouring genes, suggesting a shared regulatory link between these genes and PIGM. Altogether, the results presented in this thesis provide novel insights into tissuespecific transcriptional control of a housekeeping gene by lineage-specific and generic TFs.