988 resultados para Fractional Integral


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mathematics Subject Classification: 33D60, 33E12, 26A33

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B70, 41A25, 41A17, 26D10. ∗Part of the results were reported at the Conference “Pioneers of Bulgarian Mathematics”, Sofia, 2006.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The statistical properties of fractional Brownian walks are used to construct a path integral representation of the conformations of polymers with different degrees of bond correlation. We specifically derive an expression for the distribution function of the chains’ end‐to‐end distance, and evaluate it by several independent methods, including direct evaluation of the discrete limit of the path integral, decomposition into normal modes, and solution of a partial differential equation. The distribution function is found to be Gaussian in the spatial coordinates of the monomer positions, as in the random walk description of the chain, but the contour variables, which specify the location of the monomer along the chain backbone, now depend on an index h, the degree of correlation of the fractional Brownian walk. The special case of h=1/2 corresponds to the random walk. In constructing the normal mode picture of the chain, we conjecture the existence of a theorem regarding the zeros of the Bessel function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a fractional order proportional-integral controller is developed for a miniature air vehicle for rectilinear path following and trajectory tracking. The controller is implemented by constructing a vector field surrounding the path to be followed, which is then used to generate course commands for the miniature air vehicle. The fractional order proportional-integral controller is simulated using the fundamentals of fractional calculus, and the results for this controller are compared with those obtained for a proportional controller and a proportional integral controller. In order to analyze the performance of the controllers, four performance metrics, namely (maximum) overshoot, control effort, settling time and integral of the timed absolute error cost, have been selected. A comparison of the nominal as well as the robust performances of these controllers indicates that the fractional order proportional-integral controller exhibits the best performance in terms of ITAE while showing comparable performances in all other aspects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 33D60, 26A33, 33C60

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mathematics Subject Classification: 43A20, 26A33 (main), 44A10, 44A15

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 30C45, Secondary 26A33, 30C80

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mathematics Subject Classification: 33D60, 33D90, 26A33

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by a Caputo fractional derivative, and the second order space derivative by a symmetric fractional derivative. First, a method of separating variables expresses the analytical solution of the TSS-FDE in terms of the Mittag--Leffler function. Second, we propose two numerical methods to approximate the Caputo time fractional derivative: the finite difference method; and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional Fokker-Planck equations (FFPEs) have gained much interest recently for describing transport dynamics in complex systems that are governed by anomalous diffusion and nonexponential relaxation patterns. However, effective numerical methods and analytic techniques for the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional Fokker-Planck equations with a nonlinear source term (TSFFPE-NST), which involve the Caputo time fractional derivative (CTFD) of order α ∈ (0, 1) and the symmetric Riesz space fractional derivative (RSFD) of order μ ∈ (1, 2). Approximating the CTFD and RSFD using the L1-algorithm and shifted Grunwald method, respectively, a computationally effective numerical method is presented to solve the TSFFPE-NST. The stability and convergence of the proposed numerical method are investigated. Finally, numerical experiments are carried out to support the theoretical claims.