943 resultados para Fourth order method
Resumo:
Wegen der fortschreitenden Miniaturisierung von Halbleiterbauteilen spielen Quanteneffekte eine immer wichtigere Rolle. Quantenphänomene werden gewöhnlich durch kinetische Gleichungen beschrieben, aber manchmal hat eine fluid-dynamische Beschreibung Vorteile: die bessere Nutzbarkeit für numerische Simulationen und die einfachere Vorgabe von Randbedingungen. In dieser Arbeit werden drei Diffusionsgleichungen zweiter und vierter Ordnung untersucht. Der erste Teil behandelt die implizite Zeitdiskretisierung und das Langzeitverhalten einer degenerierten Fokker-Planck-Gleichung. Der zweite Teil der Arbeit besteht aus der Untersuchung des viskosen Quantenhydrodynamischen Modells in einer Raumdimension und dessen Langzeitverhaltens. Im letzten Teil wird die Existenz von Lösungen einer parabolischen Gleichung vierter Ordnung in einer Raumdimension bewiesen, und deren Langzeitverhalten studiert.
Resumo:
The use of techniques such as envelope tracking (ET) and envelope elimination and restoration (EER) can improve the efficiency of radio frequency power amplifiers (RFPA). In both cases, high-bandwidth DC/DC converters called envelope amplifiers (EA) are used to modulate the supply voltage of the RFPA. This paper addresses the analysis and design of a modified two-phase Buck converter optimized to operate as EA. The effects of multiphase operation on the tracking capabilities are analyzed. The use of a fourth-order output filter is proposed to increase the attenuation of the harmonics generated by the PWM operation, thus allowing a reduction of the ratio between the switching frequency and the converter bandwidth. The design of the output filter is addressed considering envelope tracking accuracy and distortion caused by the side bands arising from the nonlinear modulation process. Finally, the proposed analysis and design methods are supported by simulation results, as well as demonstrated by experiments obtained using two 100-W, 10-MHz, two-phase Buck EAs capable of accurately tracking a 1.5-MHz bandwidth OFDM signal.
Resumo:
2010 Mathematics Subject Classification: 34A30, 34A40, 34C10.
Resumo:
We introduce a residual-based a posteriori error indicator for discontinuous Galerkin discretizations of the biharmonic equation with essential boundary conditions. We show that the indicator is both reliable and efficient with respect to the approximation error measured in terms of a natural energy norm, under minimal regularity assumptions. We validate the performance of the indicator within an adaptive mesh refinement procedure and show its asymptotic exactness for a range of test problems.
Resumo:
The dynamics of a passive back-to-back test rig have been characterised, leading to a multi-coordinate approach for the analysis of arbitrary test configurations. Universal joints have been introduced into a typical pre-loaded back-to-back system in order to produce an oscillating torsional moment in a test specimen. Two different arrangements have been investigated using a frequency-based sub-structuring approach: the receptance method. A numerical model has been developed in accordance with this theory, allowing interconnection of systems with two-coordinates and closed multi-loop schemes. The model calculates the receptance functions and modal and deflected shapes of a general system. Closed form expressions of the following individual elements have been developed: a servomotor, damped continuous shaft and a universal joint. Numerical results for specific cases have been compared with published data in literature and experimental measurements undertaken in the present work. Due to the complexity of the universal joint and its oscillating dynamic effects, a more detailed analysis of this component has been developed. Two models have been presented. The first represents the joint as two inertias connected by a massless cross-piece. The second, derived by the dynamic analysis of a spherical four-link mechanism, considers the contribution of the floating element and its gyroscopic effects. An investigation into non-linear behaviour has led to a time domain model that utilises the Runge-Kutta fourth order method for resolution of the dynamic equations. It has been demonstrated that the torsional receptances of a universal joint, derived using the simple model, result in representation of the joint as an equivalent variable inertia. In order to verify the model, a test rig has been built and experimental validation undertaken. The variable inertia of a universal joint has lead to a novel application of the component as a passive device for the balancing of inertia variations in slider-crank mechanisms.
Resumo:
Les systèmes de communication optique avec des formats de modulation avancés sont actuellement l’un des sujets de recherche les plus importants dans le domaine de communication optique. Cette recherche est stimulée par les exigences pour des débits de transmission de donnée plus élevés. Dans cette thèse, on examinera les techniques efficaces pour la modulation avancée avec une détection cohérente, et multiplexage par répartition en fréquence orthogonale (OFDM) et multiples tonalités discrètes (DMT) pour la détection directe et la détection cohérente afin d’améliorer la performance de réseaux optiques. Dans la première partie, nous examinons la rétropropagation avec filtre numérique (DFBP) comme une simple technique d’atténuation de nonlinéarité d’amplificateur optique semiconducteur (SOA) dans le système de détection cohérente. Pour la première fois, nous démontrons expérimentalement l’efficacité de DFBP pour compenser les nonlinéarités générées par SOA dans un système de détection cohérente porteur unique 16-QAM. Nous comparons la performance de DFBP avec la méthode de Runge-Kutta quatrième ordre. Nous examinons la sensibilité de performance de DFBP par rapport à ses paramètres. Par la suite, nous proposons une nouvelle méthode d’estimation de paramètre pour DFBP. Finalement, nous démontrons la transmission de signaux de 16-QAM aux taux de 22 Gbaud sur 80km de fibre optique avec la technique d’estimation de paramètre proposée pour DFBP. Dans la deuxième partie, nous nous concentrons sur les techniques afin d’améliorer la performance des systèmes OFDM optiques en examinent OFDM optiques cohérente (CO-OFDM) ainsi que OFDM optiques détection directe (DDO-OFDM). Premièrement, nous proposons une combinaison de coupure et prédistorsion pour compenser les distorsions nonlinéaires d’émetteur de CO-OFDM. Nous utilisons une interpolation linéaire par morceaux (PLI) pour charactériser la nonlinéarité d’émetteur. Dans l’émetteur nous utilisons l’inverse de l’estimation de PLI pour compenser les nonlinéarités induites à l’émetteur de CO-OFDM. Deuxièmement, nous concevons des constellations irrégulières optimisées pour les systèmes DDO-OFDM courte distance en considérant deux modèles de bruit de canal. Nous démontrons expérimentalement 100Gb/s+ OFDM/DMT avec la détection directe en utilisant les constellations QAM optimisées. Dans la troisième partie, nous proposons une architecture réseaux optiques passifs (PON) avec DDO-OFDM pour la liaison descendante et CO-OFDM pour la liaison montante. Nous examinons deux scénarios pour l’allocations de fréquence et le format de modulation des signaux. Nous identifions la détérioration limitante principale du PON bidirectionnelle et offrons des solutions pour minimiser ses effets.
Resumo:
This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high-order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier-Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity-velocity formulation for a two-dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high-order compact and non-compact finite-differences from fourth-order to sixth-order of accuracy. The other scheme used spectral methods instead of finite-difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed-order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one- dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal is the stress critical point determination for an intramedullary nail.
Resumo:
This work provides a general framework for the design of second-order blind estimators without adopting anyapproximation about the observation statistics or the a prioridistribution of the parameters. The proposed solution is obtainedminimizing the estimator variance subject to some constraints onthe estimator bias. The resulting optimal estimator is found todepend on the observation fourth-order moments that can be calculatedanalytically from the known signal model. Unfortunately,in most cases, the performance of this estimator is severely limitedby the residual bias inherent to nonlinear estimation problems.To overcome this limitation, the second-order minimum varianceunbiased estimator is deduced from the general solution by assumingaccurate prior information on the vector of parameters.This small-error approximation is adopted to design iterativeestimators or trackers. It is shown that the associated varianceconstitutes the lower bound for the variance of any unbiasedestimator based on the sample covariance matrix.The paper formulation is then applied to track the angle-of-arrival(AoA) of multiple digitally-modulated sources by means ofa uniform linear array. The optimal second-order tracker is comparedwith the classical maximum likelihood (ML) blind methodsthat are shown to be quadratic in the observed data as well. Simulationshave confirmed that the discrete nature of the transmittedsymbols can be exploited to improve considerably the discriminationof near sources in medium-to-high SNR scenarios.
Resumo:
The binding energies of deformed even-even nuclei have been analyzed within the framework of a recently proposed microscopic-macroscopic model. We have used the semiclassical Wigner-Kirkwood ̄h expansion up to fourth order, instead of the usual Strutinsky averaging scheme, to compute the shell corrections in a deformed Woods-Saxon potential including the spin-orbit contribution. For a large set of 561 even-even nuclei with Z 8 and N 8, we find an rms deviation from the experiment of 610 keV in binding energies, comparable to the one found for the same set of nuclei using the finite range droplet model of Moller and Nix (656 keV). As applications of our model, we explore its predictive power near the proton and neutron drip lines as well as in the superheavy mass region. Next, we systematically explore the fourth-order Wigner-Kirkwood corrections to the smooth part of the energy. It is found that the ratio of the fourth-order to the second-order corrections behaves in a very regular manner as a function of the asymmetry parameter I=(N−Z)/A. This allows us to absorb the fourth-order corrections into the second-order contributions to the binding energy, which enables us us to simplify and speed up the calculation of deformed nuclei.
Resumo:
The semiclassical Wigner-Kirkwood ̄h expansion method is used to calculate shell corrections for spherical and deformed nuclei. The expansion is carried out up to fourth order in ̄h. A systematic study of Wigner-Kirkwood averaged energies is presented as a function of the deformation degrees of freedom. The shell corrections, along with the pairing energies obtained by using the Lipkin-Nogami scheme, are used in the microscopic-macroscopic approach to calculate binding energies. The macroscopic part is obtained from a liquid drop formula with six adjustable parameters. Considering a set of 367 spherical nuclei, the liquid drop parameters are adjusted to reproduce the experimental binding energies, which yields a root mean square (rms) deviation of 630 keV. It is shown that the proposed approach is indeed promising for the prediction of nuclear masses.
Resumo:
The method of the fourth-order cumulant of Challa, Landau, and Binder is used together with the Monte Carlo histogram technique of Ferrenberg and Swendsen to study the order of the phase transitions of two-dimensional Ising systems with multispin interactions in the horizontal direction and two-body interactions in the vertical direction.
Resumo:
The well-known two-step fourth-order Numerov method was shown to have better interval of periodicity when made explicit, see Chawla (1984). It is readily verifiable that the improved method still has phase-lag of order 4. We suggest a slight modification from which linear problems could benefit. Phase-lag of any order can be achieved, but only order 6 is derived. © 1991.
Resumo:
In this paper, the Askey-Wiener scheme and the Galerkin method are used to obtain approximate solutions to stochastic beam bending on Winkler foundation. The study addresses Euler-Bernoulli beams with uncertainty in the bending stiffness modulus and in the stiffness of the foundation. Uncertainties are represented by parameterized stochastic processes. The random behavior of beam response is modeled using the Askey-Wiener scheme. One contribution of the paper is a sketch of proof of existence and uniqueness of the solution to problems involving fourth order operators applied to random fields. From the approximate Galerkin solution, expected value and variance of beam displacement responses are derived, and compared with corresponding estimates obtained via Monte Carlo simulation. Results show very fast convergence and excellent accuracies in comparison to Monte Carlo simulation. The Askey-Wiener Galerkin scheme presented herein is shown to be a theoretically solid and numerically efficient method for the solution of stochastic problems in engineering.
Resumo:
An improved class of Boussinesq systems of an arbitrary order using a wave surface elevation and velocity potential formulation is derived. Dissipative effects and wave generation due to a time-dependent varying seabed are included. Thus, high-order source functions are considered. For the reduction of the system order and maintenance of some dispersive characteristics of the higher-order models, an extra O(mu 2n+2) term (n ??? N) is included in the velocity potential expansion. We introduce a nonlocal continuous/discontinuous Galerkin FEM with inner penalty terms to calculate the numerical solutions of the improved fourth-order models. The discretization of the spatial variables is made using continuous P2 Lagrange elements. A predictor-corrector scheme with an initialization given by an explicit RungeKutta method is also used for the time-variable integration. Moreover, a CFL-type condition is deduced for the linear problem with a constant bathymetry. To demonstrate the applicability of the model, we considered several test cases. Improved stability is achieved.