982 resultados para Forecasting methods
Resumo:
Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal.
Resumo:
We present an efficient graph-based algorithm for quantifying the similarity of household-level energy use profiles, using a notion of similarity that allows for small time–shifts when comparing profiles. Experimental results on a real smart meter data set demonstrate that in cases of practical interest our technique is far faster than the existing method for computing the same similarity measure. Having a fast algorithm for measuring profile similarity improves the efficiency of tasks such as clustering of customers and cross-validation of forecasting methods using historical data. Furthermore, we apply a generalisation of our algorithm to produce substantially better household-level energy use forecasts from historical smart meter data.
Resumo:
In the first essay, "Determinants of Credit Expansion in Brazil", analyzes the determinants of credit using an extensive bank level panel dataset. Brazilian economy has experienced a major boost in leverage in the first decade of 2000 as a result of a set factors ranging from macroeconomic stability to the abundant liquidity in international financial markets before 2008 and a set of deliberate decisions taken by President Lula's to expand credit, boost consumption and gain political support from the lower social strata. As relevant conclusions to our investigation we verify that: credit expansion relied on the reduction of the monetary policy rate, international financial markets are an important source of funds, payroll-guaranteed credit and investment grade status affected positively credit supply. We were not able to confirm the importance of financial inclusion efforts. The importance of financial sector sanity indicators of credit conditions cannot be underestimated. These results raise questions over the sustainability of this expansion process and financial stability in the future. The second essay, “Public Credit, Monetary Policy and Financial Stability”, discusses the role of public credit. The supply of public credit in Brazil has successfully served to relaunch the economy after the Lehman-Brothers demise. It was later transformed into a driver for economic growth as well as a regulation device to force private banks to reduce interest rates. We argue that the use of public funds to finance economic growth has three important drawbacks: it generates inflation, induces higher loan rates and may induce financial instability. An additional effect is the prevention of market credit solutions. This study contributes to the understanding of the costs and benefits of credit as a fiscal policy tool. The third essay, “Bayesian Forecasting of Interest Rates: Do Priors Matter?”, discusses the choice of priors when forecasting short-term interest rates. Central Banks that commit to an Inflation Target monetary regime are bound to respond to inflation expectation spikes and product hiatus widening in a clear and transparent way by abiding to a Taylor rule. There are various reports of central banks being more responsive to inflationary than to deflationary shocks rendering the monetary policy response to be indeed non-linear. Besides that there is no guarantee that coefficients remain stable during time. Central Banks may switch to a dual target regime to consider deviations from inflation and the output gap. The estimation of a Taylor rule may therefore have to consider a non-linear model with time varying parameters. This paper uses Bayesian forecasting methods to predict short-term interest rates. We take two different approaches: from a theoretic perspective we focus on an augmented version of the Taylor rule and include the Real Exchange Rate, the Credit-to-GDP and the Net Public Debt-to-GDP ratios. We also take an ”atheoretic” approach based on the Expectations Theory of the Term Structure to model short-term interest. The selection of priors is particularly relevant for predictive accuracy yet, ideally, forecasting models should require as little a priori expert insight as possible. We present recent developments in prior selection, in particular we propose the use of hierarchical hyper-g priors for better forecasting in a framework that can be easily extended to other key macroeconomic indicators.
Resumo:
No contexto da previsão de séries temporais, é grande o interesse em estudos de métodos de previsão de séries temporais que consigam identificar as estruturas e padrões existentes nos dados históricos, possibilitando gerar os próximos padrões da série. A proposta defendida nesta tese é a de desenvolvimento de um framework que utilize ao máximo as potencialidades das técnicas de previsão (redes neurais artificiais) com as técnicas de otimização (algoritmos genéticos) em um sistema híbrido intercomunicativo que aproveite bem as vantagens de cada uma dessas técnicas para a geração de cenários futuros que possam mostrar, além das previsões normais com base nos valores históricos, percursos alternativos das curvas das séries temporais analisadas.
Resumo:
The continuous advance of the Brazilian economy and increased competition in the heavy equipment market, increasingly point to the need for accurate sales forecasting processes, which allow an optimized strategic planning and therefore better overall results. In this manner, we found that the sales forecasting process deserves to be studied and understood, since it has a key role in corporate strategic planning. Accurate forecasting methods enable direction of companies to circumvent the management difficulties and the variations of finished goods inventory, which make companies more competitive. By analyzing the stages of the sales forecasting it was possible to observe that this process is methodical, bureaucratic and demands a lot of training for their managers and professionals. In this paper we applied the modeling method and the selecting process which has been done for Armstrong to select the most appropriate technique for two products of a heavy equipment industry and it has been through this method that the triple exponential smoothing technique has been chosen for both products. The results obtained by prediction with the triple exponential smoothing technique were better than forecasts prepared by the industry experts
Resumo:
In dieser Dissertation stellen wir einen neuen Ansatz zurModellierungvon Polymersystemen vor. Es werden (von methodischer Seiteher) zweiautomatisierte Iterationschemata dazu eingeführt,Kraftfeldparametermesoskopischer Polymersysteme systematisch zu optimieren:DasSimplex-Verfahren und das Struktur-Differenzen-Verfahren. Sowerdendiejenigen Freiheitsgrade aus Polymersystemen eliminiert,die einehohe Auflösung erfordern, was die Modellierung größerersystemeermöglicht. Nach Tests an einfachen Flüssigkeiten werdenvergröberteModelle von drei prototypischen Polymeren (Polyacrylsäure,Polyvinylalkohol und Polyisopren) in unterschiedlichenUmgebungen(gutes Lösungsmittel und Schmelze) entwickelt und ihrVerhalten aufder Mesoskala ausgiebig geprüft. Die zugehörige Abbildung(vonphysikalischer Seite her) so zu gestalten, daß sie dieunverwechselbaren Charakteristiken jedes systems auf diemesoskopischeLängenskala überträgt, stellt eine entscheidende Anforderungan dieautomatisierten Verfahren dar. Unsere Studien belegen, daß mesoskopische Kraftfeldertemperatur- unddichtespezifisch sind und daher bei geändernden Bedingungennachoptimiert werden müssen. Gleichzeitig läßt sichabschätzen, beiwelchen Umgebungsbedingungen dies noch nicht notwendig wird.In allenFällen reichen effektive Paarpotentiale aus, einrealistischesmesoskopisches Modell zu konstruieren. VergröberteSimulationenwerden im Falle der Polyacrylsäure erfolgreich gegenexperimentelleLichtstreudaten getestet. Wir erzielen für Molmassen bis zu300000g/mol eine hervorragende Übereinstimmung für denhydrodynamischenRadius. Unsere Ergebnisse erklären auch Korrekturen zudessenVerhalten als Funktion der Kettenlänge ('Skalenverhalten'). Im Fallevon Polyisopren untersuchen wir sowohl statische als auchdynamischeGrößen und stellen klare Unterschiede unserer Ergebnisse zudeneneines einfachen semi-flexiblen Mesoskalenmodells fest. InderProteinforschung werden aus Datenbanken gewonnene effektivePaarwechselwirkungen dazu verwendet, die freie Energie einesneuensystems vorherzusagen. Wir belegen in einem Exkurs mittelsGittersimulationen, daß es selbst in einfachsten Fällennicht gelingt,dies auch nur qualitativ korrekt zu bewerkstelligen.
Resumo:
Acute life-threatening events are mostly predictable in adults and children. Despite real-time monitoring these events still occur at a rate of 4%. This paper describes an automated prediction system based on the feature space embedding and time series forecasting methods of the SpO2 signal; a pulsatile signal synchronised with heart beat. We develop an age-independent index of abnormality that distinguishes patient-specific normal to abnormal physiology transitions. Two different methods were used to distinguish between normal and abnormal physiological trends based on SpO2 behaviour. The abnormality index derived by each method is compared against the current gold standard of clinical prediction of critical deterioration. Copyright © 2013 Inderscience Enterprises Ltd.
Resumo:
The acceleration of technological change and the process of globalization has intensified competition and the need for new products (goods and services), resulting in growing concern for organizations in the development of technological, economic and social advances. This work presents an overview of the development of wind energy-related technologies and design trends. To conduct this research, it is (i) a literature review on technological innovation, technological forecasting methods and fundamentals of wind power; (ii) the analysis of patents, with the current technology landscape studied by means of finding information in patent databases; and (iii) the preparation of the map of technological development and construction of wind turbines of the future trend information from the literature and news from the sector studied. Step (ii) allowed the study of 25 644 patents between the years 2003-2012, in which the US and China lead the ranking of depositors and the American company General Electric and the Japanese Mitsubishi stand as the largest holder of wind technology. Step (iii) analyzed and identified that most of the innovations presented in the technological evolution of wind power are incremental product innovations to market. The proposed future trends shows that the future wind turbines tend to have a horizontal synchronous shaft, which with the highest diameter of 194m and 164m rotor nacelle top, the top having 7,5MW generation. The materials used for the blades are new materials with characteristics of low density and high strength. The towers are trend with hybrid materials, uniting the steel to the concrete. This work tries to cover the existing gap in the gym on the use of technological forecasting techniques for the wind energy industry, through the recognition that utilize the patent analysis, analysis of scientific articles and stories of the area, provide knowledge about the industry and influencing the quality of investment decisions in R & D and hence improves the efficiency and effectiveness of wind power generation
Resumo:
Hulun Lake, China’s fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (- 364±64 mm/yr, ~70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49±45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ~ net 210 Mm3/yr (equivalent to ~ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.
Resumo:
Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised.
Resumo:
Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Globally on-shore wind power has seen considerable growth in all grid systems. In the coming decade off-shore wind power is also expected to expand rapidly. Wind power is variable and intermittent over various time scales because it is weather dependent. Therefore wind power integration into traditional grids needs additional power system and electricity market planning and management for system balancing. This extra system balancing means that there is additional system costs associated with wind power assimilation. Wind power forecasting and prediction methods are used by system operators to plan unit commitment, scheduling and dispatch and by electricity traders and wind farm owners to maximize profit. Accurate wind power forecasting and prediction has numerous challenges. This paper presents a study of the existing and possible future methods used in wind power forecasting and prediction for both on-shore and off-shore wind farms.
Resumo:
Hulun Lake, China's fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (-364±64 mm/yr, ∼70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49±45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ∼ net 210 Mm3/yr (equivalent to ∼ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.
Resumo:
Load forecasting is an important task in the management of a power utility. The most recent developments in forecasting involve the use of artificial intelligence techniques, which offer powerful modelling capabilities. This paper discusses these techniques and provides a review of their application to load forecasting.