854 resultados para Food -- Analysis
Resumo:
National food control systems are vital tools in governing the safety and quality of food intended for human consumption. This study of the Omani system was conducted to evaluate the effectiveness of the current food controls in place for protecting, in particular, the public health from emerging biological and chemical hazards. In response to this situation, a survey was undertaken within the different food safety authorities in Oman to examine the different elements of the national food control systems in terms of their existing food control management, food legislation, food inspection, food analysis laboratories and information, education and communications. Officials from the different authorities were interviewed and results were captured in prepared questionnaires. Overall examinations of the challenges, strength and weakness of the existing system have been highlighted. The findings of the study indicate significant progress is being made and the creation by the government of a national Centre for Food Safety and Quality is a significant positive step.
Resumo:
A calibration method was developed using flow injection analysis (FI) with a Gradient Calibration Method (GCM). The method allows the rapid determination of zinc In foods (approximately 30 min) after treatment with concentrated sulphuric acid and 30% hydrogen peroxide, and analysis with flame atomic absorption spectrometry (FAAS). The method provides analytical results with a relative standard deviation of about 2% and requires less time than by conventional FI calibration. The electronic selection of different segments along the gradient and monitoring of the technique covers wide concentration ranges while maintaining the inherent high precision of flow injection analysis. Concentrations, flow rates, and flow times of the reagents were optimized in order to obtain best accuracy and precision. Flow rates of 10 mL/min were selected for zinc. In addition, the system enables electronic dilution and calibration where a multipoint curve can be constructed using a single sample injection.
Resumo:
Vaccinum myrtillus L. belongs to Ericaceae family, being commonly known for its sweet small fruits: the blueberries. Widely consumed in fresh, these fruits are also used in jams and marmalades due to their digestive and hypoglycemic properties and also due to the presence of several bioactive compounds [!]. Therefore, it has become a very appealing matrix in the development of functional products that, beyond their nutritional properties, will add a long-term beneficial physiological/health effect [2]. In the present work, three novel blueberry based products developed by RBR Foods Company (Portugal), were characterized in terms of their nutritional and chemical properties: carbohydrates, ash, proteins, fat and energetic value (following official methods of food analysis), fatty acids profile (by CG-FID), soluble sugars (by HPLCRI), organic acids (by HPLC-DAD) and tocopherols (by HPLC-fluorescence). The products result from a mixture of the fruits with rose petals (PI), marigold petals (P2) and apple and goji berries (P3). The blueberry fruits were used as control sample. The nutritional profile of the novel products was very similar to the control sample: the carbohydrates were the most abundant macronutrient, followed by proteins and total fat. Regarding sugars, fructose, glucose and sucrose were identified in all the samples. P 1 and P2 didn't show significant differences in comparison to the control, however, P3 revealed a lower concentration of sugars. In terms of fatty acids composition, all the studied samples presented higher contents in polyunsaturated fatty acids, especially due to the contribution of linoleic and alinolenic acids. The results of tocopherols revealed that the control sample only presented two isoforrns of tocopherols, a- and y-tocopherol, being the same observed in P3. However, P 1 revealed the presence of all the isoforrns of tocopherols, while P2 was lacking otocopherol; which is related with the contribution of rose and marigold petals, respectively. The a-tocopherol isoforrn was the most abundant in all the studied samples. Overall, this work contributed to the nutritional characterization of novel blueberry based products and is a part of a wider project that aims the detailed study of these products, namely their potential to be used as functional foods.
Resumo:
A macro matrix solid-phase dispersion (MSPD) method was developed to extract 266 pesticides from apple juice samples prior to gas chromatography-mass selective detection (GC-MSD) determination. A 10 g samples was mixed with 20 g diatomaceous earth. The mixture was transferred into a glass column. Pesticide residues were leached with a 160 mL hexane-dichloromethane (1:1) at 5 mL/min. Two hundred and sixty-six pesticides were divided into three groups and detected by GC-MSD under selective ion monitoring. The proposed method takes advantage of both liquid-liquid extraction and conventional MSPD methods. Application was illustrated by the analysis of 236 apple juice samples produced in Shaanxi province China mainland this year. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
An important component of this Ph.D. thesis was to determine the European consumers’ views on processed meats and bioactive compounds. Thus a survey gathered information form over 500 respondents and explored their perceptions on the healthiness and purchase-ability for both traditional and functional processed meats. This study found that the consumer was distrustful towards processed meat, especially high salt and fat content. Consumers were found to be very pro-bioactive compounds in yogurt style products but unsure of their feelings on the idea of them in meat based products, which is likely due to the lack of familiarity to these products. The work in this thesis also centred on the applied acceptable reduction of salt and fat in terms of consumer sensory analysis. The products chosen ranged in the degree of comminution, from a coarse beef patty to a more fine emulsion style breakfast sausage and frankfurter. A full factorial design was implemented which saw the production of twenty beef patties with varying concentrations of fat (30%, 40%, 50%, 60% w/w) and salt (0.5%, 0.75%, 1.0%, 1.25%, 1.5% w/w). Twenty eight sausage were also produced with varying concentrations of fat (22.5%, 27.5%, 32.5%, 37.5% w/w) and salt (0.8%, 1%, 1.2%, 1.4%, 1.6%, 2%, 2.4% w/w). Finally, twenty different frankfurters formulations were produced with varying concentrations of fat (10%, 15%, 20%, 25% w/w) and salt (1%, 1.5%, 2%, 2.5%, 3% w/w). From these products it was found that the most consumer acceptable beef patty was that containing 40% fat with a salt level of 1%. This is a 20% decrease in fat and a 50% decrease in salt levels when compared to commercial patty available in Ireland and the UK. For sausages, salt reduced products were rated by the consumers as paler in colour, more tender and with greater meat flavour than higher salt containing products. The sausages containing 1.4 % and 1.0 % salt were significantly (P<0.01) found to be more acceptable to consumers than other salt levels. Frankfurter salt levels below 1.5% were shown to have a negative effect on consumer acceptability, with 2.5% salt concentration being the most accepted (P<0.001) by consumers. Samples containing less fat and salt were found to be tougher, less juicy and had greater cooking losses. Thus salt perception is very important for consumer acceptability, but fat levels can be potentially reduced without significantly affecting overall acceptability. Overall it can be summarised that the consumer acceptability of salt and fat reduced processed meats depends very much on the product and generalisations cannot be assumed. The study of bio-actives in processed meat products found that the reduced salt/fat patties fortified with CoQ10 were rated as more acceptable than commercially available products for beef patties. The reduced fat and salt, as well as the CoQ10 fortified, sausages were found to compare quite well to their commercial counterparts for overall acceptability, whereas commercial frankfurters were found to be the more favoured in comparison to reduced fat and CoQ10 fortified Frankfurters.
Resumo:
The indiscriminate use of antibiotics in food-producing animals has received increasing attention as a contributory factor in the international emergence of antibiotic-resistant bacteria (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004). Numerous analytical methods for quantifying antibacterial residues in edible animal products have been developed over years (Woodward in Pesticide, veterinary and other residues in food, CRC Press, Boca Raton, 2004; Botsoglou and Fletouris in Handbook of food analysis, residues and other food component analysis, Marcel Dekker, Ghent, 2004). Being Amoxicillin (AMOX) one of those critical veterinary drugs, efforts have been made to develop simple and expeditious methods for its control in food samples. In literature, only one AMOX-selective electrode has been reported so far. In that work, phosphotungstate:amoxycillinium ion exchanger was used as electroactive material (Shoukry et al. in Electroanalysis 6:914–917, 1994). Designing new materials based on molecularly imprinted polymers (MIPs) which are complementary to the size and charge of AMOX could lead to very selective interactions, thus enhancing the selectivity of the sensing unit. AMOX-selective electrodes used imprinted polymers as electroactive materials having AMOX as target molecule to design a biomimetic imprinted cavity. Poly(vinyl chloride), sensors of methacrylic acid displayed Nernstian slopes (60.7 mV/decade) and low detection limits (2.9 × 10−5 mol/L). The potentiometric responses were not affected by pH within 4–5 and showed good selectivity. The electrodes were applied successfully to the analysis of real samples.