997 resultados para Fluid Flows
Resumo:
In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the hydrodynamic stability problem associated with the incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the eigenvalue problem in channel and pipe geometries. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual-Weighted-Residual approach, originally developed for the estimation of target functionals of the solution, to eigenvalue/stability problems. The underlying analysis consists of constructing both a dual eigenvalue problem and a dual problem for the original base solution. In this way, errors stemming from both the numerical approximation of the original nonlinear flow problem, as well as the underlying linear eigenvalue problem are correctly controlled. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.
Resumo:
This article is concerned with the construction of general isotropic and anisotropic adaptive strategies, as well as hp-mesh refinement techniques, in combination with dual-weighted-residual a posteriori error indicators for the discontinuous Galerkin finite element discretization of compressible fluid flow problems.
Resumo:
In this paper a bond graph methodology is used to model incompressible fluid flows with viscous and thermal effects. The distinctive characteristic of these flows is the role of pressure, which does not behave as a state variable but as a function that must act in such a way that the resulting velocity field has divergence zero. Velocity and entropy per unit volume are used as independent variables for a single-phase, single-component flow. Time-dependent nodal values and interpolation functions are introduced to represent the flow field, from which nodal vectors of velocity and entropy are defined as state variables. The system for momentum and continuity equations is coincident with the one obtained by using the Galerkin method for the weak formulation of the problem in finite elements. The integral incompressibility constraint is derived based on the integral conservation of mechanical energy. The weak formulation for thermal energy equation is modeled with true bond graph elements in terms of nodal vectors of temperature and entropy rates, resulting a Petrov-Galerkin method. The resulting bond graph shows the coupling between mechanical and thermal energy domains through the viscous dissipation term. All kind of boundary conditions are handled consistently and can be represented as generalized effort or flow sources. A procedure for causality assignment is derived for the resulting graph, satisfying the Second principle of Thermodynamics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
An experiment was implemented to study fluid flow in a pressure media. This procedure successfully combines nuclear magnetic resonance imaging with a pressure membrane chamber in order to visualize the non-wetting and wetting fluid flows with controlled boundary conditions. A specially designed pressure membrane chamber, made of non-magnetic materials and able to withstand 4 MPa, was designed and built for this purpose. These two techniques were applied to the drainage of Douglas fir sapwood. In the study of the longitudinal flow, narrow drainage fingers are formed in the latewood zones. They follow the longitudinal direction of wood and spread throughout the sample length. These fingers then enlarge in the cross-section plane and coalesce until drainage reaches the whole latewood part. At the end of the experiments, when the drainage of liquid water in latewood is completed, just a few sites of percolation appear in earlywood zones. This difference is a result of the wood anatomical structure, where pits, the apertures that allow the sap to flow between wood cells, are more easily aspirated in earlywood than in latewood. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
River Flow 2010
Resumo:
The work in this paper deals with the development of momentum and thermal boundary layers when a power law fluid flows over a flat plate. At the plate we impose either constant temperature, constant flux or a Newton cooling condition. The problem is analysed using similarity solutions, integral momentum and energy equations and an approximation technique which is a form of the Heat Balance Integral Method. The fluid properties are assumed to be independent of temperature, hence the momentum equation uncouples from the thermal problem. We first derive the similarity equations for the velocity and present exact solutions for the case where the power law index n = 2. The similarity solutions are used to validate the new approximation method. This new technique is then applied to the thermal boundary layer, where a similarity solution can only be obtained for the case n = 1.
Resumo:
We present a variable time step, fully adaptive in space, hybrid method for the accurate simulation of incompressible two-phase flows in the presence of surface tension in two dimensions. The method is based on the hybrid level set/front-tracking approach proposed in [H. D. Ceniceros and A. M. Roma, J. Comput. Phys., 205, 391400, 2005]. Geometric, interfacial quantities are computed from front-tracking via the immersed-boundary setting while the signed distance (level set) function, which is evaluated fast and to machine precision, is used as a fluid indicator. The surface tension force is obtained by employing the mixed Eulerian/Lagrangian representation introduced in [S. Shin, S. I. Abdel-Khalik, V. Daru and D. Juric, J. Comput. Phys., 203, 493-516, 2005] whose success for greatly reducing parasitic currents has been demonstrated. The use of our accurate fluid indicator together with effective Lagrangian marker control enhance this parasitic current reduction by several orders of magnitude. To resolve accurately and efficiently sharp gradients and salient flow features we employ dynamic, adaptive mesh refinements. This spatial adaption is used in concert with a dynamic control of the distribution of the Lagrangian nodes along the fluid interface and a variable time step, linearly implicit time integration scheme. We present numerical examples designed to test the capabilities and performance of the proposed approach as well as three applications: the long-time evolution of a fluid interface undergoing Rayleigh-Taylor instability, an example of bubble ascending dynamics, and a drop impacting on a free interface whose dynamics we compare with both existing numerical and experimental data.
Resumo:
This paper is concerned with the numerical solutions of time dependent two-dimensional incompressible flows. By using the primitive variables of velocity and pressure, the Navier-Stokes and mass conservation equations are solved by a semi-implicit finite difference projection method. A new bounded higher order upwind convection scheme is employed to deal with the non-linear (advective) terms. The procedure is an adaptation of the GENSMAC (J. Comput. Phys. 1994; 110: 171-186) methodology for calculating confined and free surface fluid flows at both low and high Reynolds numbers. The calculations were performed by using the 2D version of the Freeflow simulation system (J. Comp. Visual. Science 2000; 2:199-210). In order to demonstrate the capabilities of the numerical method, various test cases are presented. These are the fully developed flow in a channel, the flow over a backward facing step, the die-swell problem, the broken dam flow, and an impinging jet onto a flat plate. The numerical results compare favourably with the experimental data and the analytical solutions. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
This paper presents numerical simulations of incompressible fluid flows in the presence of a magnetic field at low magnetic Reynolds number. The equations governing the flow are the Navier-Stokes equations of fluid motion coupled with Maxwell's equations of electromagnetics. The study of fluid flows under the influence of a magnetic field and with no free electric charges or electric fields is known as magnetohydrodynamics. The magnetohydrodynamics approximation is considered for the formulation of the non-dimensional problem and for the characterization of similarity parameters. A finite-difference technique is used to discretize the equations. In particular, an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional fluid flows is presented. The discretized conservation equations are solved in stream function-vorticity formulation. We compare the ADI and generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number and magnetic Reynolds number problems. Numerical results demonstrating the applicability of this technique are also presented. The simulation of incompressible magneto hydrodynamic fluid flows is illustrated by numerical solution for two-dimensional cases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A second-order closure is developed for predicting turbulent flows of viscoelastic fluids described by a modified generalised Newtonian fluid model incorporating a nonlinear viscosity that depends on a strain-hardening Trouton ratio as a means to handle some of the effects of viscoelasticity upon turbulent flows. Its performance is assessed by comparing its predictions for fully developed turbulent pipe flow with experimental data for four different dilute polymeric solutions and also with two sets of direct numerical simulation data for fluids theoretically described by the finitely extensible nonlinear elastic - Peterlin model. The model is based on a Newtonian Reynolds stress closure to predict Newtonian fluid flows, which incorporates low Reynolds number damping functions to properly deal with wall effects and to provide the capability to handle fluid viscoelasticity more effectively. This new turbulence model was able to capture well the drag reduction of various viscoelastic fluids over a wide range of Reynolds numbers and performed better than previously developed models for the same type of constitutive equation, even if the streamwise and wall-normal turbulence intensities were underpredicted.
Resumo:
The numerical simulation of flows of highly elastic fluids has been the subject of intense research over the past decades with important industrial applications. Therefore, many efforts have been made to improve the convergence capabilities of the numerical methods employed to simulate viscoelastic fluid flows. An important contribution for the solution of the High-Weissenberg Number Problem has been presented by Fattal and Kupferman [J. Non-Newton. Fluid. Mech. 123 (2004) 281-285] who developed the matrix-logarithm of the conformation tensor technique, henceforth called log-conformation tensor. Its advantage is a better approximation of the large growth of the stress tensor that occur in some regions of the flow and it is doubly beneficial in that it ensures physically correct stress fields, allowing converged computations at high Weissenberg number flows. In this work we investigate the application of the log-conformation tensor to three-dimensional unsteady free surface flows. The log-conformation tensor formulation was applied to solve the Upper-Convected Maxwell (UCM) constitutive equation while the momentum equation was solved using a finite difference Marker-and-Cell type method. The resulting developed code is validated by comparing the log-conformation results with the analytic solution for fully developed pipe flows. To illustrate the stability of the log-conformation tensor approach in solving three-dimensional free surface flows, results from the simulation of the extrudate swell and jet buckling phenomena of UCM fluids at high Weissenberg numbers are presented. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this article, we develop the a priori and a posteriori error analysis of hp-version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ ℝd, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm, which are explicit in the local mesh size and local polynomial degree of the approximating finite element method. A series of numerical experiments illustrate the performance of the proposed a posteriori error indicators within an automatic hp-adaptive refinement algorithm.
Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media
Resumo:
DEM modelling of the motion of coarse fractions of the charge inside SAG mills has now been well established for more than a decade. In these models the effect of slurry has broadly been ignored due to its complexity. Smoothed particle hydrodynamics (SPH) provides a particle based method for modelling complex free surface fluid flows and is well suited to modelling fluid flow in mills. Previous modelling has demonstrated the powerful ability of SPH to capture dynamic fluid flow effects such as lifters crashing into slurry pools, fluid draining from lifters, flow through grates and pulp lifter discharge. However, all these examples were limited by the ability to model only the slurry in the mill without the charge. In this paper, we represent the charge as a dynamic porous media through which the SPH fluid is then able to flow. The porous media properties (specifically the spatial distribution of porosity and velocity) are predicted by time averaging the mill charge predicted using a large scale DEM model. This allows prediction of transient and steady state slurry distributions in the mill and allows its variation with operating parameters, slurry viscosity and slurry volume, to be explored. (C) 2006 Published by Elsevier Ltd.
Resumo:
Despite the wide swath of applications where multiphase fluid contact lines exist, there is still no consensus on an accurate and general simulation methodology. Most prior numerical work has imposed one of the many dynamic contact-angle theories at solid walls. Such approaches are inherently limited by the theory accuracy. In fact, when inertial effects are important, the contact angle may be history dependent and, thus, any single mathematical function is inappropriate. Given these limitations, the present work has two primary goals: 1) create a numerical framework that allows the contact angle to evolve naturally with appropriate contact-line physics and 2) develop equations and numerical methods such that contact-line simulations may be performed on coarse computational meshes.
Fluid flows affected by contact lines are dominated by capillary stresses and require accurate curvature calculations. The level set method was chosen to track the fluid interfaces because it is easy to calculate interface curvature accurately. Unfortunately, the level set reinitialization suffers from an ill-posed mathematical problem at contact lines: a ``blind spot'' exists. Standard techniques to handle this deficiency are shown to introduce parasitic velocity currents that artificially deform freely floating (non-prescribed) contact angles. As an alternative, a new relaxation equation reinitialization is proposed to remove these spurious velocity currents and its concept is further explored with level-set extension velocities.
To capture contact-line physics, two classical boundary conditions, the Navier-slip velocity boundary condition and a fixed contact angle, are implemented in direct numerical simulations (DNS). DNS are found to converge only if the slip length is well resolved by the computational mesh. Unfortunately, since the slip length is often very small compared to fluid structures, these simulations are not computationally feasible for large systems. To address the second goal, a new methodology is proposed which relies on the volumetric-filtered Navier-Stokes equations. Two unclosed terms, an average curvature and a viscous shear VS, are proposed to represent the missing microscale physics on a coarse mesh.
All of these components are then combined into a single framework and tested for a water droplet impacting a partially-wetting substrate. Very good agreement is found for the evolution of the contact diameter in time between the experimental measurements and the numerical simulation. Such comparison would not be possible with prior methods, since the Reynolds number Re and capillary number Ca are large. Furthermore, the experimentally approximated slip length ratio is well outside of the range currently achievable by DNS. This framework is a promising first step towards simulating complex physics in capillary-dominated flows at a reasonable computational expense.