914 resultados para Fine spatial scale
Resumo:
Anthropogenic habitat alterations and water-management practices have imposed an artificial spatial scale onto the once contiguous freshwater marshes of the Florida Everglades. To gain insight into how these changes may affect biotic communities, we examined whether variation in the abundance and community structure of large fishes (SL . 8 cm) in Everglades marshes varied more at regional or intraregional scales, and whether this variation was related to hydroperiod, water depth, floating mat volume, and vegetation density. From October 1997 to October 2002, we used an airboat electrofisher to sample large fishes at sites within three regions of the Everglades. Each of these regions is subject to unique watermanagement schedules. Dry-down events (water depth , 10 cm) occurred at several sites during spring in 1999, 2000, 2001, and 2002. The 2001 dry-down event was the most severe and widespread. Abundance of several fishes decreased significantly through time, and the number of days post-dry-down covaried significantly with abundance for several species. Processes operating at the regional scale appear to play important roles in regulating large fishes. The most pronounced patterns in abundance and community structure occurred at the regional scale, and the effect size for region was greater than the effect size for sites nested within region for abundance of all species combined, all predators combined, and each of the seven most abundant species. Non-metric multi-dimensional scaling revealed distinct groupings of sites corresponding to the three regions. We also found significant variation in community structure through time that correlated with the number of days post-dry-down. Our results suggest that hydroperiod and water management at the regional scale influence large fish communities of Everglades marshes.
Resumo:
Public Law 102-119 (Individuals with Disabilities Education Act of 1991), mandates that family members, if they wish, participate in developing a plan of treatment for their child. Traditionally, therapist have not relied on parental assessments based upon the assumption that parents overestimate their child's abilities. The present study compared parental perceptions about the developmental status of their child's fine motor abilities to the therapist's interpretation of a standardized assessment using the Peabody Developmental Motor Scale (Fine Motor). Thirty seven children, enrolled in an early intervention program, and their parents were recruited for the study. The results indicated that the parents and the therapist estimates were highly correlated and showed no significant differences when paired t-tests were computed for developmental ages and scaled scores. However, analyses of variances were significantly correlated for gender and number of siblings.
Resumo:
Knowledge of the geographical distribution of timber tree species in the Amazon is still scarce. This is especially true at the local level, thereby limiting natural resource management actions. Forest inventories are key sources of information on the occurrence of such species. However, areas with approved forest management plans are mostly located near access roads and the main industrial centers. The present study aimed to assess the spatial scale effects of forest inventories used as sources of occurrence data in the interpolation of potential species distribution models. The occurrence data of a group of six forest tree species were divided into four geographical areas during the modeling process. Several sampling schemes were then tested applying the maximum entropy algorithm, using the following predictor variables: elevation, slope, exposure, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). The results revealed that using occurrence data from only one geographical area with unique environmental characteristics increased both model overfitting to input data and omission error rates. The use of a diagonal systematic sampling scheme and lower threshold values led to improved model performance. Forest inventories may be used to predict areas with a high probability of species occurrence, provided they are located in forest management plan regions representative of the environmental range of the model projection area.
Resumo:
BACKGROUND AND AIMS: In a mixed-ploidy population, strong frequency-dependent mating will lead to the elimination of the less common cytotype, unless prezygotic barriers enhance assortative mating. However, such barriers favouring cytotype coexistence have only rarely been explored. Here, an assessment is made of the mechanisms involved in formation of mixed-ploidy populations and coexistence of diploid plants and their closely related allotetraploid derivates from the Centaurea stoebe complex (Asteraceae). METHODS: An investigation was made of microspatial and microhabitat distribution, life-history and fitness traits, flowering phenology, genetic relatedness of cytotypes and intercytotype gene flow (cpDNA and microsatellites) in six mixed-ploidy populations in Central Europe. KEY RESULTS: Diploids and tetraploids were genetically differentiated, thus corroborating the secondary origin of contact zones. The cytotypes were spatially segregated at all sites studied, with tetraploids colonizing preferentially drier and open microhabitats created by human-induced disturbances. Conversely, they were rare in more natural microsites and microsites with denser vegetation despite their superior persistence ability (polycarpic life cycle). The seed set of tetraploid plants was strongly influenced by their frequency in mixed-ploidy populations. Triploid hybrids originated from bidirectional hybridizations were extremely rare and almost completely sterile, indicating a strong postzygotic barrier between cytotypes. CONCLUSIONS: The findings suggest that tetraploids are later immigrants into already established diploid populations and that anthropogenic activities creating open niches favouring propagule introductions were the major factor shaping the non-random distribution and habitat segregation of cytotypes at fine spatial scale. Establishment and spread of tetraploids was further facilitated by their superior persistence through the perennial life cycle. The results highlight the importance of non-adaptive spatio-temporal processes in explaining microhabitat and microspatial segregation of cytotypes.
Resumo:
The diversity of tropical forest plant phenology has called the attention of researchers for a long time. We continue investigating the factors that drive phenological diversity on a wide scale, but we are unaware of the variation of plant reproductive phenology at a fine spatial scale despite the high spatial variation in species composition and abundance in tropical rainforests. We addressed fine scale variability by investigating the reproductive phenology of three contiguous vegetations across the Atlantic rainforest coastal plain in Southeastern Brazil. We asked whether the vegetations differed in composition and abundance of species, the microenvironmental conditions and the reproductive phenology, and how their phenology is related to regional and local microenvironmental factors. The study was conducted from September 2007 to August 2009 at three contiguous sites: (1) seashore dominated by scrub vegetation, (2) intermediary covered by restinga forest and (3) foothills covered by restinga pre-montane transitional forest. We conducted the microenvironmental, plant and phenological survey within 30 transects of 25 mx4 m (10 per site). We detected significant differences in floristic, microenvironment and reproductive phenology among the three vegetations. The microenvironment determines the spatial diversity observed in the structure and composition of the flora, which in turn determines the distinctive flowering and fruiting peaks of each vegetation (phenological diversity). There was an exchange of species providing flowers and fruits across the vegetation complex. We conclude that plant reproductive patterns as described in most phenological studies (without concern about the microenvironmental variation) may conceal the fine scale temporal phenological diversity of highly diverse tropical vegetation. This phenological diversity should be taken into account when generating sensor-derived phenologies and when trying to understand tropical vegetation responses to environmental changes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We examined the relationships between topography, soil properties and tree species composition in a Neotropical swamp forest in southeastern Brazil. Plots were sampled in the forest, encompassing three different soil ground water regimes along the topographical declivity. All non-climbing plant individuals with trunk height >1.3 m were sampled. A canonical correspondence analysis-CCA-of the species-environmental relationships grouped tree species according to drainage and chemical soil conditions. A total of 86 species were found, being 77 species in the inferior, 40 species in the intermediate and 35 species in the superior topographic section. Some species were among the 10 most abundant ones, both in the overall sampled area and in each topographical section, with alternation events occurring only with their abundance position. However, substantial differences in floristic composition between sections were detected in a fine spatial scale, due to higher number of species, diversity index (H′) and species unique (exclusives) in the inferior topographic section. These higher values can be attributed to its higher spatial heterogeneity that included better drained and seasonally waterlogged soils, higher soil fertility and lower acidity. The increase of the soil water saturation and the uniform conditions derived from the superficial water layer has led to a lower number of species and an increase on the palm trees abundance in the intermediate and superior sections. Our results showed that at a small spatial scale niche differentiation must be an important factor related to the increase of the local diversity. The wide distribution of the most abundant species in the studied area and the increase of local diversity corroborate the pattern of distribution of species in larger scales of swamp forests, in which the most abundant species repeat themselves in high densities in different remnants. However, the floristic composition of each remnant is strongly variable, contributing to the increase of regional diversity. © 2008 Springer Science+Business Media B.V.
Resumo:
Hybrid zones are regions where individuals from genetically differentiated populations meet and mate, resulting in at least some offspring of mixed ancestry. Patterns of gene flow (introgression) in hybrid zones vary across the genome, allowing assessment of the role of individual genes or genome regions in reproductive isolation. Here, we document patterns of introgression between two recently diverged species of field crickets. We sampled at a very fine spatial scale and genotyped crickets for 110 highly differentiated single nucleotide polymorphisms (SNPs) identified through transcriptome scans. Using both genomic and geographic cline analysis, we document remarkably abrupt transitions (<100 m) in allele frequencies for 50 loci, despite high levels of gene flow at other loci. These are among the steepest clines documented for any hybridizing taxa. Furthermore, the cricket hybrid zone provides one of the clearest examples of the semi-permeability of species boundaries. Comparisons between data from the fine-scale transect and data (for the same set of markers) from sampling a much larger area in a different region of the cricket hybrid zone reveal consistent patterns of introgression for individual loci. The consistency in patterns of introgression between these two distant and distinct regions of the hybrid zone suggests that strong selection is acting to maintain abrupt discontinuities within the hybrid zone and that genomic regions with restricted introgression likely include genes that contribute to nonecological prezygotic barriers.
Nesting In The Clouds: Evaluating And Predicting Sea Turtle Nesting Beach Parameters From Lidar Data
Resumo:
Humans' desire for knowledge regarding animal species and their interactions with the natural world have spurred centuries of studies. The relatively new development of remote sensing systems using satellite or aircraft-borne sensors has opened up a wide field of research, which unfortunately largely remains dependent on coarse-scale image spatial resolution, particularly for habitat modeling. For habitat-specialized species, such data may not be sufficient to successfully capture the nuances of their preferred areas. Of particular concern are those species for which topographic feature attributes are a main limiting factor for habitat use. Coarse spatial resolution data can smooth over details that may be essential for habitat characterization. Three studies focusing on sea turtle nesting beaches were completed to serve as an example of how topography can be a main deciding factor for certain species. Light Detection and Ranging (LiDAR) data were used to illustrate that fine spatial scale data can provide information not readily captured by either field work or coarser spatial scale sources. The variables extracted from the LiDAR data could successfully model nesting density for loggerhead (Caretta caretta), green (Chelonia mydas), and leatherback (Dermochelys coriacea) sea turtle species using morphological beach characteristics, highlight beach changes over time and their correlations with nesting success, and provide comparisons for nesting density models across large geographic areas. Comparisons between the LiDAR dataset and other digital elevation models (DEMs) confirmed that fine spatial scale data sources provide more similar habitat information than those with coarser spatial scales. Although these studies focused solely on sea turtles, the underlying principles are applicable for many other wildlife species whose range and behavior may be influenced by topographic features.
Resumo:
Tese de Doutoramento, Ciências do Mar, da Terra e do Ambiente, Ramo: Ciências do Mar, Especialização em Ecologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016
Resumo:
Plants are sessile organisms, often characterized by limited dispersal. Seeds and pollen are the critical stages for gene flow. Here we investigate spatial genetic structure, gene dispersal and the relative contribution of pollen vs seed in the movement of genes in a stable metapopulation of the white campion Silene latifolia within its native range. This short-lived perennial plant is dioecious, has gravity-dispersed seeds and moth-mediated pollination. Direct measures of pollen dispersal suggested that large populations receive more pollen than small isolated populations and that most gene flow occurs within tens of meters. However, these studies were performed in the newly colonized range (North America) where the specialist pollinator is absent. In the native range (Europe), gene dispersal could fall on a different spatial scale. We genotyped 258 individuals from large and small (15) subpopulations along a 60 km, elongated metapopulation in Europe using six highly variable microsatellite markers, two X-linked and four autosomal. We found substantial genetic differentiation among subpopulations (global F(ST)=0.11) and a general pattern of isolation by distance over the whole sampled area. Spatial autocorrelation revealed high relatedness among neighboring individuals over hundreds of meters. Estimates of gene dispersal revealed gene flow at the scale of tens of meters (5-30 m), similar to the newly colonized range. Contrary to expectations, estimates of dispersal based on X and autosomal markers showed very similar ranges, suggesting similar levels of pollen and seed dispersal. This may be explained by stochastic events of extensive seed dispersal in this area and limited pollen dispersal.
Resumo:
Perception of Mach bands may be explained by spatial filtering ('lateral inhibition') that can be approximated by 2nd derivative computation, and several alternative models have been proposed. To distinguish between them, we used a novel set of ‘generalised Gaussian’ images, in which the sharp ramp-plateau junction of the Mach ramp was replaced by smoother transitions. The images ranged from a slightly blurred Mach ramp to a Gaussian edge and beyond, and also included a sine-wave edge. The probability of seeing Mach Bands increased with the (relative) sharpness of the junction, but was largely independent of absolute spatial scale. These data did not fit the predictions of MIRAGE, nor 2nd derivative computation at a single fine scale. In experiment 2, observers used a cursor to mark features on the same set of images. Data on perceived position of Mach bands did not support the local energy model. Perceived width of Mach bands was poorly explained by a single-scale edge detection model, despite its previous success with Mach edges (Wallis & Georgeson, 2009, Vision Research, 49, 1886-1893). A more successful model used separate (odd and even) scale-space filtering for edges and bars, local peak detection to find candidate features, and the MAX operator to compare odd- and even-filter response maps (Georgeson, VSS 2006, Journal of Vision 6(6), 191a). Mach bands are seen when there is a local peak in the even-filter (bar) response map, AND that peak value exceeds corresponding responses in the odd-filter (edge) maps.
Resumo:
Background: In Brazil, 99% of malaria cases are concentrated in the Amazon, and malaria's spatial distribution is commonly associated with socio-environmental conditions on a fine landscape scale. In this study, the spatial patterns of malaria and its determinants in a rural settlement of the Brazilian agricultural reform programme called ""Vale do Amanhecer"" in the northern Mato Grosso state were analysed. Methods: In a fine-scaled, exploratory ecological study, geocoded notification forms corresponding to malaria cases from 2005 were compared with spectral indices, such as the Normalized Difference Vegetation Index (NDVI) and the third component of the Tasseled Cap Transformation (TC_3) and thematic layers, derived from the visual interpretation of multispectral TM-Landsat 5 imagery and the application of GIS distance operators. Results: Of a total of 336 malaria cases, 102 (30.36%) were caused by Plasmodium falciparum and 174 (51.79%) by Plasmodium vivax. Of all the cases, 37.6% (133 cases) were from residents of a unique road. In total, 276 cases were reported for the southern part of the settlement, where the population density is higher, with notification rates higher than 10 cases per household. The local landscape mostly consists of open areas (38.79 km(2)). Training forest occupied 27.34 km(2) and midsize vegetation 7.01 km(2). Most domiciles with more than five notified malaria cases were located near areas with high NDVI values. Most domiciles (41.78%) and malaria cases (44.94%) were concentrated in areas with intermediate values of the TC_3, a spectral index representing surface and vegetation humidity. Conclusions: Environmental factors and their alteration are associated with the occurrence and spatial distribution of malaria cases in rural settlements.
Resumo:
ATSR-2 active fire data from 1996 to 2000, TRMM VIRS fire counts from 1998 to 2000 and burn scars derived from SPOT VEGETATION ( the Global Burnt Area 2000 product) were mapped for Peru and Bolivia to analyse the spatial distribution of burning and its intra- and inter-annual variability. The fire season in the region mainly occurs between May and October; though some variation was found between the six broad habitat types analysed: desert, grassland, savanna, dry forest, moist forest and yungas (the forested valleys on the eastern slope of the Andes). Increased levels of burning were generally recorded in ATSR-2 and TRMM VIRS fire data in response to the 1997/1998 El Nino, but in some areas the El Nino effect was masked by the more marked influences of socio-economic change on land use and land cover. There were differences between the three global datasets: ATSR-2 under-recorded fires in ecosystems with low net primary productivities. This was because fires are set during the day in this region and, when fuel loads are low, burn out before the ATSR-2 overpass in the region which is between 02.45 h and 03.30 h. TRMM VIRS was able to detect these fires because its overpasses cover the entire diurnal range on a monthly basis. The GBA2000 product has significant errors of commission (particularly areas of shadow in the well-dissected eastern Andes) and omission (in the agricultural zone around Santa Cruz, Bolivia and in north-west Peru). Particular attention was paid to biomass burning in high-altitude grasslands, where fire is an important pastoral management technique. Fires and burn scars from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) data for a range of years between 1987 and 2000 were mapped for areas around Parque Nacional Rio Abiseo (Peru) and Parque Nacional Carrasco (Bolivia). Burn scars mapped in the grasslands of these two areas indicate far more burning had taken place than either the fires or the burn scars derived from global datasets. Mean scar sizes are smaller and have a smaller range in size between years the in the study area in Peru (6.6-7.1 ha) than Bolivia (16.9-162.5 ha). Trends in biomass burning in the two highland areas can be explained in terms of the changing socio-economic environments and impacts of conservation. The mismatch between the spatial scale of biomass burning in the high-altitude grasslands and the sensors used to derive global fire products means that an entire component of the fire regime in the region studied is omitted, despite its importance in the farming systems on the Andes.
Resumo:
Many numerical models for weather prediction and climate studies are run at resolutions that are too coarse to resolve convection explicitly, but too fine to justify the local equilibrium assumed by conventional convective parameterizations. The Plant-Craig (PC) stochastic convective parameterization scheme, developed in this paper, solves this problem by removing the assumption that a given grid-scale situation must always produce the same sub-grid-scale convective response. Instead, for each timestep and gridpoint, one of the many possible convective responses consistent with the large-scale situation is randomly selected. The scheme requires as input the large-scale state as opposed to the instantaneous grid-scale state, but must nonetheless be able to account for genuine variations in the largescale situation. Here we investigate the behaviour of the PC scheme in three-dimensional simulations of radiative-convective equilibrium, demonstrating in particular that the necessary space-time averaging required to produce a good representation of the input large-scale state is not in conflict with the requirement to capture large-scale variations. The resulting equilibrium profiles agree well with those obtained from established deterministic schemes, and with corresponding cloud-resolving model simulations. Unlike the conventional schemes the statistics for mass flux and rainfall variability from the PC scheme also agree well with relevant theory and vary appropriately with spatial scale. The scheme is further shown to adapt automatically to changes in grid length and in forcing strength.