976 resultados para Filtering techniques


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Image filtering techniques have potential applications in biomedical image processing such as image restoration and image enhancement. The potential of traditional filters largely depends on the apriori knowledge about the type of noise corrupting the image. This makes the standard filters to be application specific. For example, the well-known median filter and its variants can remove the salt-and-pepper (or impulse) noise at low noise levels. Each of these methods has its own advantages and disadvantages. In this paper, we have introduced a new finite impulse response (FIR) filter for image restoration where, the filter undergoes a learning procedure. The filter coefficients are adaptively updated based on correlated Hebbian learning. This algorithm exploits the inter pixel correlation in the form of Hebbian learning and hence performs optimal smoothening of the noisy images. The application of the proposed filter on images corrupted with Gaussian noise, results in restorations which are better in quality compared to those restored by average and Wiener filters. The restored image is found to be visually appealing and artifact-free

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose optimal bilateral filtering techniques for Gaussian noise suppression in images. To achieve maximum denoising performance via optimal filter parameter selection, we adopt Stein's unbiased risk estimate (SURE)-an unbiased estimate of the mean-squared error (MSE). Unlike MSE, SURE is independent of the ground truth and can be used in practical scenarios where the ground truth is unavailable. In our recent work, we derived SURE expressions in the context of the bilateral filter and proposed SURE-optimal bilateral filter (SOBF). We selected the optimal parameters of SOBF using the SURE criterion. To further improve the denoising performance of SOBF, we propose variants of SOBF, namely, SURE-optimal multiresolution bilateral filter (SMBF), which involves optimal bilateral filtering in a wavelet framework, and SURE-optimal patch-based bilateral filter (SPBF), where the bilateral filter parameters are optimized on small image patches. Using SURE guarantees automated parameter selection. The multiresolution and localized denoising in SMBF and SPBF, respectively, yield superior denoising performance when compared with the globally optimal SOBF. Experimental validations and comparisons show that the proposed denoisers perform on par with some state-of-the-art denoising techniques. (C) 2015 SPIE and IS&T

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The beam phase measurement system in the HIRFL is introduced. Based on the double-balanced mixer principle using rf-signal mixing and filtering techniques, a stable and sensitive phase measurement system has been developed. The phase history of the ion beam is detected by using a set of capacitive pick-up probes installed in the cyclotron. The phase information of the measurement is necessary for tuning to obtain a optimized isochronous magnetic field which induces to maximize the beam intensity and to optimize the beam quality. The result of the phase measurement is reliable and the accurancy reaches +/- 0.5 degrees.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of inverse filtering techniques for high-quality singing voice analysis/synthesis is discussed. In the context of source-filter models, inverse filtering provides a noninvasive method to extract the voice source, and thus to study voice quality. Although this approach is widely used in speech synthesis, this is not the case in singing voice. Several studies have proved that inverse filtering techniques fail in the case of singing voice, the reasons being unclear. In order to shed light on this problem, we will consider here an additional feature of singing voice, not present in speech: the vibrato. Vibrato has been traditionally studied by sinusoidal modeling. As an alternative, we will introduce here a novel noninteractive source filter model that incorporates the mechanisms of vibrato generation. This model will also allow the comparison of the results produced by inverse filtering techniques and by sinusoidal modeling, as they apply to singing voice and not to speech. In this way, the limitations of these conventional techniques, described in previous literature, will be explained. Both synthetic signals and singer recordings are used to validate and compare the techniques presented in the paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MALDI (matrix-assisted laser desorption/ionization) is one of the most important techniques used to produce large biomolecular ions in the gas phase. Surprisingly, the exact ionization mechanism is still not well understood and absolute values for the ion yields are scarce. This is in part due to the unknown efficiencies of typical detectors, especially for heavy biomolecular ions. As an alternative, charged particles can be non-destructively detected using an image-charge detector where the output voltage signal is proportional to the total charge within the device. In this paper, we report an absolute calibration which provides the voltage output per detected electronic charge in our experimental arrangement. A minimum of 3 x 10(3) ions were required to distinguish the signal above background noise in a single pass through the device, which could be further reduced using filtering techniques. The calibration results have been applied to raw MALDI spectra to measure absolute ion yields of both matrix and analyte ions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents an efficient method for volume rendering of glioma tumors from segmented 2D MRI Datasets with user interactive control, by replacing manual segmentation required in the state of art methods. The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the pre- operative tumor volume is essential. Tumor portions were automatically segmented from 2D MR images using morphological filtering techniques. These seg- mented tumor slices were propagated and modeled with the software package. The 3D modeled tumor consists of gray level values of the original image with exact tumor boundary. Axial slices of FLAIR and T2 weighted images were used for extracting tumors. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming proc- ess and is prone to error. These defects are overcome in this method. Authors verified the performance of our method on several sets of MRI scans. The 3D modeling was also done using segmented 2D slices with the help of a medical software package called 3D DOCTOR for verification purposes. The results were validated with the ground truth models by the Radi- ologist.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The accuracy of a 3D reconstruction using laser scanners is significantly determined by the detection of the laser stripe. Since the energy pattern of such a stripe corresponds to a Gaussian profile, it makes sense to detect the point of maximum light intensity (or peak) by computing the zero-crossing point of the first derivative of such Gaussian profile. However, because noise is present in every physical process, such as electronic image formation, it is not sensitive to perform the derivative of the image of the stripe in almost any situation, unless a previous filtering stage is done. Considering that stripe scanning is an inherently row-parallel process, every row of a given image must be processed independently in order to compute its corresponding peak position in the row. This paper reports on the use of digital filtering techniques in order to cope with the scanning of different surfaces with different optical properties and different noise levels, leading to the proposal of a more accurate numerical peak detector, even at very low signal-to-noise ratios

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of inflows into and outflows from cavities within the roughness; (iv) larger vortices on the rough wall compared to the smooth wall; (v) the effect of the different generation mechanism at the wall in setting the scales of structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High spatial resolution environmental data gives us a better understanding of the environmental factors affecting plant distributions at fine spatial scales. However, large environmental datasets dramatically increase compute times and output species model size stimulating the need for an alternative computing solution. Cluster computing offers such a solution, by allowing both multiple plant species Environmental Niche Models (ENMs) and individual tiles of high spatial resolution models to be computed concurrently on the same compute cluster. We apply our methodology to a case study of 4,209 species of Mediterranean flora (around 17% of species believed present in the biome). We demonstrate a 16 times speed-up of ENM computation time when 16 CPUs were used on the compute cluster. Our custom Java ‘Merge’ and ‘Downsize’ programs reduce ENM output files sizes by 94%. The median 0.98 test AUC score of species ENMs is aided by various species occurrence data filtering techniques. Finally, by calculating the percentage change of individual grid cell values, we map the projected percentages of plant species vulnerable to climate change in the Mediterranean region between 1950–2000 and 2020.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes the development of a Computer System for Analysis of Mammograms SCAM, that aids the doctor specialist in the identification and analysis of existent lesions in digital mammograms. The computer system for digital mammograms processing will make use of a group of techniques of Digital Image Processing (DIP), with the purpose of aiding the medical professional to extract the information contained in the mammogram. This system possesses an interface of easy use for the user, allowing, starting from the supplied mammogram, a group of processing operations, such as, the enrich of the images through filtering techniques, the segmentation of areas of the mammogram, the calculation the area of the lesions, thresholding the lesion, and other important tools for the medical professional's diagnosis. The Wavelet Transform will used and integrated into the computer system, with the objective of allowing a multiresolution analysis, thus supplying a method for identifying and analyzing microcalcifications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The studied region, named Forquilha and localized in northwestern Central Ceará domain (northern portion of Borborema Province), presents a lithostratigraphic framework constituted by paleoproterozoic metaplutonics, metasedimentary sequences and neoproterozoic granitoids. The metasedimentary rocks of Ceará group occupy most part of the area. This group is subdivided in two distinct units: Canindé and Independência. Canindé unit is represented basically by biotite paragneisses and muscovite paragneisses, with minor metabasic rocks (amphibolite lens). Independência sequence is composed by garnetiferous paragneisses, sillimanite-garnet-quartz-muscovite schists and quartz-muscovite schists, pure or muscovite quartzites and rare marbles. At least three ductile deformation events were recognized in both units of Ceará group, named D1, D2 and D3. The former one is interpreted as related to a low angle tangential tectonics which mass transport is southward. D2 event is marked by the development of close/isoclinal folds with a N-S oriented axis. Refolding patterns generated by F1 and F2 superposition are found in several places. The latest event (D3) corresponds to a transcurrent tectonics, which led to development of mega-folds and several shear zones, under a transpressional regime. The mapped shear zones are Humberto Monte (ZCHM), Poço Cercado (ZCPC) and Forquilha (ZCF). Digital image processing of enhanced Landsat 7-ETM+ satellite images, combined with field data, demonstrate that these penetrative structures are associated with positive and negative geomorphologic patterns, distributed in linear and curvilinear arrangements with tonal banding, corresponding to the ductile fabric and to crests. Diverse color composites were tested and RGB-531 and RGB-752 provided the best results for lineament analysis of the most prominent shear zones. Spatial filtering techniques (3x3 and 5x5 filters) were also used and the application of Prewitt filters generated the best products. The integrated analysis of morphological and textural aspects from filtered images, variation of tonalities related to the distribution of geologic units in color composites and the superposition over a digital elevation model, contributed to a characterization of the structural framework of the study area. Kinematic compatibility of ZCHM, ZCPC, ZCF shear zones, as well as Sobral-Pedro II (ZCSPII) shear zone, situated to the west of the study area, was one of the goal of this work. Two of these shear zones (ZCHM, ZCPC) display sinistral movements, while the others (ZCSPII, ZCF) exhibit dextral kinematics. 40Ar/39Ar ages obtained in this thesis for ZCSPII and ZCPC, associated with other 40Ar/39Ar data of adjacent areas, indicate that all these shear zones are related to Brasiliano orogeny. The trend of the structures, the opposite shear senses and the similar metamorphic conditions are fitted in a model based on the development of conjugate shear zones in an unconfined transpression area. A WNW-ESE bulk shortening direction is infered. The geometry and kinematic of the studied structures suggest that shortening was largely accommodated by lateral extrusion, with only minor amounts of vertical stretch

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Voltage reference generation is an important issue on electronic power conditioners or voltage compensators connected to the electric grid. Several equipments, such as Dynamic Voltage Restorers (DVR), Uninterruptable Power Supplies (UPS) and Unified Power Quality Conditioners (UPQC) need a proper voltage reference to be able to compensate electric network disturbances. This work presents a new reference generator's algorithm, based on vector algebra and digital filtering techniques. It is particularly suited for the development of voltage compensators with energy storage, which would be able to mitigate steady state disturbances, such as waveform distortions and unbalances, and also transient disturbances, like voltage sags and swells. Simulation and experimental results are presented for the validation of the proposed algorithm. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Um registro sísmico é frequentemente representado como a convolução de um pulso-fonte com a resposta do meio ao impulso, relacionada ao caminho da propagação. O processo de separação destes dois componentes da convolução é denominado deconvolução. Existe uma variedade de aproximações para o desenvolvimento de uma deconvolução. Uma das mais comuns é o uso da filtragem linear inversa, ou seja, o processamento do sinal composto, através de um filtro linear, cuja resposta de frequência é a recíproca da transformada de Fourier de um dos componentes do sinal. Obviamente, a fim de usarmos a filtragem inversa, tais componentes devem ser conhecidas ou estimadas. Neste trabalho, tratamos da aplicação a sinais sísmicos, de uma técnica de deconvolução não linear, proposta por Oppenheim (1965), a qual utiliza a teoria de uma classe de sistemas não lineares, que satisfazem um princípio generalizado de superposição, denominados de sistemas homomórficos. Tais sistemas são particularmente úteis na separação de sinais que estão combinados através da operação de convolução. O algoritmo da deconvolução homomórfica transforma o processo de convolução em uma superposição aditiva de seus componentes, com o resultado de que partes simples podem ser separadas mais facilmente. Esta classe de técnicas de filtragem representa uma generalização dos problemas de filtragem linear. O presente método oferece a considerável vantagem de que não é necessário fazer qualquer suposição prévia sobre a natureza do pulso sísmico fonte, ou da resposta do meio ao impulso, não requerendo assim, as considerações usuais de que o pulso seja de fase-mínima e que a distribuição dos impulsos seja aleatória, embora a qualidade dos resultados obtidos pela análise homomórfica seja muito sensível à razão sinal/ruído, como demonstrado.