130 resultados para Fibonacci superlattice


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the Fibonacci bimodal maps on the interval and show that their two turning points are both in the same minimal invariant Cantor set. Two of these maps with the same orientation have the same kneading sequences and, among bimodal maps without central returns, they exhibit turning points with the strongest recurrence as possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a theoretical study about the properties of magnetic polaritons in superlattices arranged in a periodic and quasiperiodic fashíons. In the periodic superlattice, in order to describe the behavior of the bulk and surface modes an effective medium approach, was used that simplify enormously the algebra involved. The quasi-periodic superlattice was described by a suitable theoretical model based on a transfer-matrix treatment, to derive the polariton's dispersion relation, using Maxwell's equations (including effect of retardation). Here, we find a fractal spectra characterized by a power law for the distribution of the energy bandwidths. The localization and scaling behavior of the quasiperiodic structure were studied for a geometry where the wave vector and the external applied magnetic field are in the same plane (Voigt geometry). Numerical results are presented for the ferromagnet Fe and for the metamagnets FeBr2 and FeCl2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Making heterolayered perovskite materials constitutes an approach for the creation of better dielectric and ferroelectric properties. In the experiment reported here, heterolayered PZT40/PZT60 films were grown on Pt/Ti/SiO2/Si (100) by a chemical solution deposition. The dielectric constant of the heterolayered thin film was significantly enhanced compared with that of pure PZT40 and PZT60 thin films. A dielectric constant of 701 at 100 kHz was observed for a stacking periodicity of six layers having a total thickness of 150 nm. The heterolayered film exhibited greater remanent polarization than PZT60 and PZT40 films. The values of remanent polarization were 7.9, 18.5, and 31 muC/cm(2), respectively, for pure PZT60, PZT40, and heterolayered thin films, suggesting that the superior dielectric and ferroelectric properties of the heterolayered thin film resulted from a cooperative interaction between the ferroelectric phases made from alternating tetragonal and rhombohedral phases of PZT, simulating the morphotropic phase boundary of this system. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the interplay between electronic correlations and an underlying superlattice structure in determining the period of charge density waves (CDW's), by considering a one-dimensional Hubbard model with a repeated (nonrandom) pattern of repulsive (U > 0) and free (U=0) sites. Density matrix renormalization group diagonalization of finite systems (up to 120 sites) is used to calculate the charge-density correlation function and structure factor in the ground state. The modulation period can still be predicted through effective Fermi wave vectors k(F)(*) and densities, and we have found that it is much more sensitive to electron (or hole) doping, both because of the narrow range of densities needed to go from q(*)=0 to pi, but also due to sharp 2k(F)(*)-4k(F)(*) transitions; these features render CDW's more versatile for actual applications in heterostructures than in homogeneous systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we study the effects of a longitudinal periodic potential on a parabolic quantum wire defined in a two-dimensional electron gas with Rashba spin-orbit interaction. For an infinite wire superlattice we find, by direct diagonalization, that the energy gaps are shifted away from the usual Bragg planes due to the Rashba spin-orbit interaction. Interestingly, our results show that the location of the band gaps in energy can be controlled via the strength of the Rashba spin-orbit interaction. We have also calculated the charge conductance through a periodic potential of a finite length via the nonequilibrium Green's function method combined with the Landauer formalism. We find dips in the conductance that correspond well to the energy gaps of the infinite wire superlattice. From the infinite wire energy dispersion, we derive an equation relating the location of the conductance dips as a function of the (gate controllable) Fermi energy to the Rashba spin-orbit coupling strength. We propose that the strength of the Rashba spin-orbit interaction can be extracted via a charge conductance measurement.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal–dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal–dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated surface waves guided by the boundary of a semi-infinite layered metal-dielectric nanostructure cut normally to the layers and a semi-infinite dielectric material. Using the Floquet-Bloch formalism, we found that Dyakonov-like surface waves with hybrid polarization can propagate in dramatically enhanced angular range compared to conventional birefringent materials. Our numerical simulations for an Ag-GaAs stack in contact with glass show a low to moderate influence of losses.