33 resultados para Ferrofluids
Resumo:
In recent years, interest in tissue engineering and its solutions has increased considerably. In particular, scaffolds have become fundamental tools in bone graft substitution and are used in combination with a variety of bio-agents. However, a long-standing problem in the use of these conventional scaffolds lies in the impossibility of re-loading the scaffold with the bio-agents after implantation. This work introduces the magnetic scaffold as a conceptually new solution. The magnetic scaffold is able, via magnetic driving, to attract and take up in vivo growth factors, stem cells or other bio-agents bound to magnetic particles. The authors succeeded in developing a simple and inexpensive technique able to transform standard commercial scaffolds made of hydroxyapatite and collagen in magnetic scaffolds. This innovative process involves dip-coating of the scaffolds in aqueous ferrofluids containing iron oxide nanoparticles coated with various biopolymers. After dip-coating, the nanoparticles are integrated into the structure of the scaffolds, providing the latter with magnetization values as high as 15 emu g�1 at 10 kOe. These values are suitable for generating magnetic gradients, enabling magnetic guiding in the vicinity and inside the scaffold. The magnetic scaffolds do not suffer from any structural damage during the process, maintaining their specific porosity and shape. Moreover, they do not release magnetic particles under a constant flow of simulated body fluids over a period of 8 days. Finally, preliminary studies indicate the ability of the magnetic scaffolds to support adhesion and proliferation of human bone marrow stem cells in vitro. Hence, this new type of scaffold is a valuable candidate for tissue engineering applications, featuring a novel magnetic guiding option.
Resumo:
Future microrobotic applications require actuators that can generate a high actuation force and stroke in a limited volume. Up to now, little research has been performed on the development of pneumatic and hydraulic microactuators, although they offer great prospects in achieving high force densities. One of the main technological barriers in the development of these actuators is the fabrication of powerful seals with low leakage. This paper presents a seal technology for linear fluidic microactuators based on ferrofluids. A design and simulation method for these seals has been developed and validated by measurements on miniaturized actuator prototypes. These actuators have an outside diameter of 2 mm, a length of 13 mm and have been tested using both pressurized air and water. Our current actuator prototypes are able to operate at pressures up to 1.6 MPa without leakage. At these pressures, forces up to 0.65 N have been achieved. The stroke of the actuators is 10 mm. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Recent research revealed that microacruators driven by pressurized fluids are able to generate high power and force densities at microscale. Despite these promising properties, fluidic actuators are rare in microsystem technology. The main technological barrier in the development of these actuators is the fabrication of powerful seals with low leakage. This paper presents a seal technology for linear fluidic microacruators based on ferrofluids. An accurate design method for these seals has been developed and validated by measurements on miniaturized actuator prototypes. Our current actuator prototypes are able to seal pressures up to 16 bar without leakage. The actuator has an outside diameter of 2 mm, a length of 13 mm and the actuator is able to generate forces of 0.65 N and a stroke of 10 mm. Moreover, promising properties such as the restoration of the seal after a pressure overload have been observed.
Resumo:
Sol–gel glasses with Fe3O4 nanoparticles having particle sizes laying in the range 10–20 nm were encapsulated in the porous network of silica resulting in nanocomposites having both optical and magnetic properties. Spectroscopic and photoluminescence studies indicated that Fe3O4 nanocrystals are embedded in the silica matrix with no strong Si–O–Fe bonding. The composites exhibited a blue luminescence. The optical absorption edge of the composites red shifted with increasing concentration of Fe3O4 in the silica matrix. There is no obvious shift in the position of the luminescence peak with the concentration of Fe3O4 except that the intensity of the peak is decreased. The unique combinations of magnetic and optical properties are appealing for magneto–optical applications.
Resumo:
Ferrofluids belonging to the series, Ni x Fe1-x Fe2O4 and Zn x Fe1-x Fe2O4, were synthesized using cold co-precipitation. Liquid films of these ferrofluids were prepared by encapsulating the ferrofluids in between two optically smooth and ultrasonically cleaned glass plates. Magnetic field induced laser transmission through these ferrofluid films has been investigated. Magnetic field values can be calibrated in terms of output laser power in the low field region in which the variation is linear. This set up can be used as a cheap optical gaussmeter in the low field regime. Using the same set-up, the saturation magnetization of the sample used can also be calculated with a sample that is pre-characterized. Hence both magnetization of the sample, as well as applied magnetic field can be sensed and calculated with a precalibrated sample.
Resumo:
Magnetic nanocomposites containing iron oxide particles embedded in a polymer matrix have been synthesized using the method of ion exchange. They have been characterized by using low temperature and room temperature magnetic measurements and Mo¨ ssbauer spectroscopy. The iron content in these samples has also been determined. The results have been analysed and explained. The physical and chemical properties of these nanocomposite materials are different from those of the bulk. Some of the unique properties of these materials find application in information storage, color imaging, ferrofluids and magnetic refrigeration
Resumo:
Composite Fe3O4–SiO2 materials were prepared by the sol–gel method with tetraethoxysilane and aqueous-based Fe3O4 ferrofluids as precursors. The monoliths obtained were crack free and showed both optical and magnetic properties. The structural properties were determined by infrared spectroscopy, x-ray diffractometry and transmission electron microscopy. Fe3O4 particles of 20 nm size lie within the pores of the matrix without any strong Si–O–Fe bonding. The well established silica network provides effective confinement to these nanoparticles. The composites were transparent in the 600–800 nm regime and the field dependent magnetization curves suggest that the composite exhibits superparamagnetic characteristics
Resumo:
Sol–gel glasses with Fe3O4 nanoparticles having particle sizes laying in the range 10–20 nm were encapsulated in the porous network of silica resulting in nanocomposites having both optical and magnetic properties. Spectroscopic and photoluminescence studies indicated that Fe3O4 nanocrystals are embedded in the silica matrix with no strong Si–O–Fe bonding. The composites exhibited a blue luminescence. The optical absorption edge of the composites red shifted with increasing concentration of Fe3O4 in the silica matrix. There is no obvious shift in the position of the luminescence peak with the concentration of Fe3O4 except that the intensity of the peak is decreased. The unique combinations of magnetic and optical properties are appealing for magneto–optical applications.
Resumo:
Multimodal imaging agents that combine magnetic and fluorescent imaging capabilities are desirable for the high spatial and temporal resolution. In the present work, we report the synthesis of multifunctional fluorescent ferrofluids using iron oxide as the magnetic core and rhodamine B as fluorochrome shell. The core–shell structure was designed in such a way that fluorescence quenching due to the inner magnetic core was minimized by an intermediate layer of silica. The intermediate passive layer of silica was realized by a novel method which involves the esterification reaction between the epoxy group of prehydrolysed 3-Glyidoxypropyltrimethoxysilane and the surfactant over iron oxide. The as-synthesized ferrofluids have a high saturation magnetization in the range of 62–65 emu/g and were found to emit light of wavelength 640 nm ( excitation = 446 nm). Time resolved life time decay analysis showed a bi-exponential decay pattern with an increase in the decay life time in the presence of intermediate silica layer. Cytotoxicity studies confirmed the cell viability of these materials. The in vitro MRI imaging illustrated a high contrast when these multimodal nano probes were employed and the R2 relaxivity of these ∗Author to whom correspondence should be addressed. Email: smissmis@gmail.com sample was found to be 334 mM−1s−1 which reveals its high potential as a T2 contrast enhancing agent
Resumo:
The disclosure of magnetic ionic liquids (MILs) as stable dispersions of surface modified gamma-Fe(2)O(3) or CoFe(2)O(4) nanoparticles (NPs) in the 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIBF(4)) ionic liquid is reported. The magnetic NPs were characterized by X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy. The surface modified NPs have proved to form stable dispersions in BMIBF(4) in the absence of water and behave like a magnetic ionic liquid. The MILs have been characterized by Raman spectroscopy, magnetic measurements, and DSC. The stability of the magnetic NPs in BMIBF(4) is consistently explained by assuming the formation of a semiorganized protective layer composed of supramolecular aggregates in the form of [(BMI)(2)(BF(4))(3)](-). A superparamagnetic behavior and saturation magnetization of ca. 18 emu/g for a sample containing 30% w/w maghemite NPs/BMIBF(4) have been inferred from static and dynamic magnetic measurements. DSC results have shown that the MIL composed of 30% w/w CoFe(2)O(4) NPs/BMIBF(4) remains a liquid phase down to -84 degrees C.
Resumo:
The electrostatic layer-by-layer technique has been exploited as an useful strategy for fabrication of nanostructured thin films, in which specific properties can be controlled at the molecular level. Ferrofluids consist of a colloidal suspension of magnetic grains (with only a few nanometers of diameter) with present interesting physical properties and applications, ranging from telecommunication to drug delivery systems. In this article, we developed a new strategy to manipulate ferrofluids upon their immobilization in nanostructured layered films in conjunction with conventional polyelectrolytes using the layer-by-layer technique. We investigated the morphological, optical, and magnetic properties of the immobilized ferrofluid as a function of number of bilayers presented in the films. Ferrofluid/polyelectrolyte multilayers homogeneously covered the substrates surface, and the magnetic and optical properties of films exhibited a linear dependence on the number of bilayers adsorbed.
Resumo:
Magnetic particles are systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover magnetic particles with an organic material, as polymers. In this work, magnetic particles were obtained through covering magnetite particles with poly(methyl methacrylate‐comethacrylic acid) via miniemulsion polymerization process. The resultant materials were characterized X‐ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), zeta potential () measurements and vibrating sample magnetometry (VSM). XRD results showed magnetite as the predominant cristalline phase in all samples and that cristallites had nanometric dimensions. Thermogravimetric analysis revealed an increase in polymer thermal stability as a result of magnetite encapsulation. TGA results showed also that the encapsulation efficiency was directly related to nanoparticles s hidrofobicity degree. VSM measurements showed that magnetic polymeric particles were superparamagnetic, so that they may be potentially used for magnetic (bio)separation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate theoretically a ferrofluid in the presence of a rotating magnetic field using a phenomenological approach based on a equation of motion for the magnetization. We verify that the heating rates of the system display a heat transfer between the host liquid and the magnetic nanoparticles (MNPs), with symmetric profiles dependent on the vorticity value. As a result, the total heating rate reveals a magnetovortical antiresonance and characterizes the suppression of the dissipation. © 2012 Springer Science+Business Media, LLC.
Resumo:
This paper reports on the advancement of magnetic ionic liquids (MILs) as stable dispersions of surface-modified gamma-Fe2O3, Fe3O4, and CoFe2O4 magnetic nanoparticles (MNPs) in a hydrophobic ionic liquid, 1-n-butyl 3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2). The MNPs were obtained via coprecipitation and were characterized using powder X-ray diffraction, transmission electron microscopy, Raman spectroscopy and Fourier transform near-infrared (FT-NIR) spectroscopy, and magnetic measurements. The surface-modified MNPs (SM-MNPs) were obtained via the silanization of the MNPs with the aid of 1-butyl-3[3-(trimethoxysilyl)propyl]imidazolium chloride (BMSPI.Cl). The SM-MNPs were characterized by Raman spectroscopy and Fourier trail: form infrared attenuated total reflectance (FTIR-ATR) spectroscopy and by magnetic measurements. The FTIR-ATR spectra of the SM-MNPs exhibited characteristic absorptions of the imidazolium and those of the Fe-O-Si-C moieties, confirming the presence of BMSPI.Cl on the MNP surface. Thermogravimetric analysis (TGA) showed that the SM-MNPs were modified by at least one BMSPI.Cl monolayer. The MILs were characterized using Raman spectroscopy, differential scanning calorimetry (DSC), and magnetic measurements. The Raman and DSC results indicated an interaction between the SM-MNPs and the IL. This interaction promotes the formation of a supramolecular structure close to the MNP surface that mimics the IL structure and is responsible for the stability of the MIL. Magnetic measurements of the MILs indicated no hysteresis. Superparamagnetic behavior and a saturation magnetization of similar to 22 emu/g could be inferred from the magnetic measurements of a sample containing 50% w/w gamma-Fe2O3 SM-MNP/BMI-NTf2.