979 resultados para Fauna - Autotoxaemia - Experimental studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing knowledge of the genetic polymorphisms of enzymes metabolising xenobiotics in humans and their connections with individual susceptibility towards toxicants has created new and important interfaces between human epidemiology and experimental toxicology. The results of molecular epidemiological studies may provide new hypotheses and concepts, which call for experimental verification, and experimental concepts may obtain further proof by molecular epidemiological studies. If applied diligently, these possibilities may be combined to lead to new strategies of human-oriented toxicological research. This overview will present some outstanding examples for such strategies taken from the practically very important field of occupational toxicology. The main focus is placed on the effects of enzyme polymorphisms of the xenobiotic metabolism in association with the induction of bladder cancer and renal cell cancer after exposure to occupational chemicals. Also, smoking and induction of head and neck squamous cell cancer are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the details of an experimental study of cold-formed steel hollow section columns at ambient and elevated temperatures. In this study the global buckling behaviour of cold-formed Square Hollow Section (SHS) slender columns under axial compression was investigated at various uniform elevated temperatures up to 700℃. The results of these column tests are reported in this paper, which include the buckling/failure modes at elevated temperatures, and ultimate load versus temperature curves. Finite element models of tested columns were also developed and their behaviour and ultimate capacities at ambient and elevated temperatures were studied. Fire design rules given in European and American standards including the Direct Strength Method (DSM) based design rules were used to predict the ultimate capacities of tested columns at elevated temperatures. Elevated temperature mechanical properties and stress-strain models given in European steel design standards and past researches were used with design rules and finite element models to investigate their effects on SHS column capacities. Comparisons of column capacities from tests and finite element analyses with those predicted by current design rules were used to determine the accuracy of currently available column design rules in predicting the capacities of SHS columns at elevated temperatures and the need to use appropriate elevated temperature material stress-strain models. This paper presents the important findings derived from the comparisons of these column capacities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipped channel beams (LCBs) are commonly used as floor joists and bearers in buildings. However, they are subjected to specific failure modes such as web crippling. Despite considerable web crippling research, recent studies [1-6] have shown that the current web crippling design rules are unable to predict the test capacities under ETF and ITF load cases. In many instances, the predictions by the available design standards such as AISI S100, AS/NZS 4600 and Eurocode 3 Part 1-3 [7-9] are inconsistent. Hence thirty-six tests were conducted to assess the web crippling behaviour and strengths of LCBs under two flange load cases. Experimental web crippling capacities were then compared with the predictions from the current design rules. These comparisons showed that AS/NZS 4600 and AISI S100 design equations are very unconservative for LCB sections under ETF load case and are conservative for ITF load case. Hence improved equations were proposed to determine the web crippling capacities of LCBs. Suitable design rules were also developed using the direct strength method. This paper presents the details of this study and the results including improved design rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rail joints are provided with a gap to account for thermal movement and to maintain electrical insulation for the control of signals and/or broken rail detection circuits. The gap in the rail joint is regarded as a source of significant problems for the rail industry since it leads to a very short rail service life compared with other track components due to the various, and difficult to predict, failure modes – thus increasing the risk for train operations. Many attempts to improve the life of rail joints have led to a large number of patents around the world; notable attempts include strengthening through larger-sized joint bars, an increased number of bolts and the use of high yield materials. Unfortunately, no design to date has shown the ability to prolong the life of the rail joints to values close to those for continuously welded rail (CWR). This paper reports the results of a fundamental study that has revealed that the wheel contact at the free edge of the railhead is a major problem since it generates a singularity in the contact pressure and railhead stresses. A design was therefore developed using an optimisation framework that prevents wheel contact at the railhead edge. Finite element modelling of the design has shown that the contact pressure and railhead stress singularities are eliminated, thus increasing the potential to work as effectively as a CWR that does not have a geometric gap. An experimental validation of the finite element results is presented through an innovative non-contact measurement of strains. Some practical issues related to grinding rails to the optimal design are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNase S is a complex consisting of two proteolytic fragments of RNase A: the S peptide (residues 1-20) and S protein (residues 21-124). RNase S and RNase A have very similar X-ray structures and enzymatic activities. previous experiments have shown increased rates of hydrogen exchange and greater sensitivity to tryptic cleavage for RNase S relative to RNase A. It has therefore been asserted that the RNase S complex is considerably more dynamically flexible than RNase A. In the present study we examine the differences in the dynamics of RNaseS and RNase A computationally, by MD simulations, and experimentally, using trypsin cleavage as a probe of dynamics. The fluctuations around the average solution structure during the simulation were analyzed by measuring the RMS deviation in coordinates. No significant differences between RNase S and RNase A dynamics were observed in the simulations. We were able to account for the apparent discrepancy between simulation and experiment by a simple model, According to this model, the experimentally observed differences in dynamics can be quantitatively explained by the small amounts of free S peptide and S protein that are present in equilibrium with the RNase S complex. Thus, folded RNase A and the RNase S complex have identical dynamic behavior, despite the presence of a break in polypeptide chain between residues 20 and 21 in the latter molecule. This is in contrast to what has been widely believed for over 30 years about this important fragment complementation system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drop formation at the conical tips of melting rods has been experimentally studied using the transparent wax-alcohol/acetonitrile system. The effects of cone angle, rod diameter, immersion depth, and bath temperature on the detached drop mass have been studied over a wide range, besides recording useful qualitative information based on visual observation. The experimental results suggest that the phenomenon of drop formation at the tip of melting rods has a close parallel with the drop formation at conical tips, at least on a qualitative basis. However, the results could not be quantified owing to difficulties in characterizing the physical properties of the system, despite efforts to minimize them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension, obesity, dyslipidemia and dysglycemia constitute metabolic syndrome, a major public health concern, which is associated with cardiovascular mortality. High dietary salt (NaCl) is the most important dietary risk factor for elevated blood pressure. The kidney has a major role in salt-sensitive hypertension and is vulnerable to harmful effects of increased blood pressure. Elevated serum urate is a common finding in these disorders. While dysregulation of urate excretion is associated with cardiovascular diseases, present studies aimed to clarify the role of xanthine oxidoreductase (XOR), i.e. xanthine dehydrogenase (XDH) and its post-translational isoform xanthine oxidase (XO), in cardiovascular diseases. XOR yields urate from hypoxanthine and xanthine. Low oxygen levels upregulate XOR in addition to other factors. In present studies higher renal XOR activity was found in hypertension-prone rats than in the controls. Furthermore, NaCl intake increased renal XOR dose-dependently. To clarify whether XOR has any causal role in hypertension, rats were kept on NaCl diets for different periods of time, with or without a XOR inhibitor, allopurinol. While allopurinol did not alleviate hypertension, it prevented left ventricular and renal hypertrophy. Nitric oxide synthases (NOS) produce nitric oxide (NO), which mediates vasodilatation. A paucity of NO, produced by NOS inhibition, aggravated hypertension and induced renal XOR, whereas NO generating drug, alleviated salt-induced hypertension without changes in renal XOR. Zucker fa/fa rat is an animal model of metabolic syndrome. These rats developed substantial obesity and modest hypertension and showed increased hepatic and renal XOR activities. XOR was modified by diet and antihypertensive treatment. Cyclosporine (CsA) is a fungal peptide and one of the first-line immunosuppressive drugs used in the management of organ transplantation. Nephrotoxicity ensue high doses resulting in hypertension and limit CsA use. CsA increased renal XO substantially in salt-sensitive rats on a high NaCl diet, indicating a possible role for this reactive oxygen species generating isoform in CsA nephrotoxicity. Renal hypoxia, common to these rodent models of hypertension and obesity, is one of the plausible XOR inducing factors. Although XOR inhibition did not prevent hypertension, present experimental data indicate that XOR plays a role in the pathology of salt-induced cardiac and renal hypertrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclosporine-A (CsA) is widely used after organ transplantation to prevent rejection and in the treatment of autoimmune diseases. Hypertension and nephrotoxicity are common side-effects of CsA. Studies in patients on the prevention of the side-effects of CsA are difficult to conduct because the patients often receive a combination of different drugs thus making study of the side-effects of a single drug impossible. A challenge in experimental studies has been the lack of an animal model in which the side-effects concomitantly occur. Epidemiological data show an association between sodium (Na) intake and blood pressure. There is also evidence on low dietary intake of magnesium (Mg) and potassium (K) and high blood pressure. Our study was designed to develop an experimental model to study the side-effects of CsA in spontaneously hypertensive rats (SHR). On high dietary sodium, CsA caused hypertension, left ventricular hypertrophy (LVH), narrowing of the coronary arteries, small myocardial infarctions, and proteinuria, reduced creatinine clearance and histopathological renal injury in SHR. Loss of Mg into the urine caused by CsA resulted in Mg depletion in the tissues. Renal excretion of dopamine was reduced and the renin-angiotensin-aldosterone system was activated. We investigated the effects of dietary Mg and/or K and the calcium antagonist drug, isradipine, on the prevention of CsA toxicity. Dietary supplementation of Mg alone or in combination with K prevented from the deleterious pathophysiological and histopathological changes in the kidneys and the heart. K alone had little effect. Isradipine protected better than Mg from LVH, but the combination of isradipine and Mg was the most effective. Isradipine did not, however, protect against Mg loss. In our animal model, the combination of high dietary Na and treatment with CsA accelerated the development of the cardiovascular and renal changes clinically known as the side-effects of CsA. Dietary supplementation of Mg and K and reduction of Na intake and the calcium antagonist drug isradipine prevent from the deleterious effects of CsA.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipped channel beams (LCBs) are commonly used as flexural members such as floor joists and bearers in the construction 6 industry. These thin-walled LCBs are subjected to specific buckling and failure modes, one of them being web crippling. Despite considerable 7 research in this area, some recent studies have shown that the current web crippling design rules are unable to predict the test capacities under 8 end-two-flange (ETF) and interior-two-flange (ITF) load conditions. In many instances, web crippling predictions by the available design 9 standards such as AISI S100, AS/NZS 4600 and Eurocode 3 Part 1-3 are inconsistent, i.e., unconservative in some cases, although they 10 are conservative in other cases. Hence, experimental studies consisting of 36 tests were conducted in this research to assess the web crippling 11 behavior and capacities of high-strength LCBs under two-flange load cases (ETF and ITF). Experimental results were then compared with the 12 predictions from current design rules. Comparison of the ultimate web crippling capacities from tests showed that the design equations are 13 very unconservative for LCB sections under the ETF load case and are conservative for the ITF load case. Hence, improved equations were 14 proposed to determine the web crippling capacities of LCBs based on the experimental results from this study. Current design equations do 15 not provide the direct strength method (DSM) provisions for web crippling. Hence, suitable design rules were also developed under the DSM 16 format using the test results and buckling analyses using finite-element analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LiteSteel beam (LSB) is a hollow flange channel made from cold-formed steel using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. LSBs are currently used as floor joists and bearers in buildings. However, there are no appropriate design standards available due to its unique hollow flange geometry, residual stress characteristics and initial geometric imperfections arising from manufacturing processes. Recent research studies have focused on investigating the structural behaviour of LSBs under pure bending, predominant shear and combined actions. However, web crippling behaviour and strengths of LSBs still need to be examined. Therefore, an experimental study was undertaken to investigate the web crippling behaviour and strengths of LSBs under EOF (End One Flange) and IOF (Interior One Flange) load cases. A total of 23 web crippling tests were performed and the results were compared with the current AS/NZS 4600 and AISI S100 design standards, which showed that the cold-formed steel design rules predicted the web crippling capacity of LSB sections very conservatively under EOF and IOF load cases. Therefore, suitably improved design equations were proposed to determine the web crippling capacity of LSBs based on experimental results. In addition, new design equations were also developed under the Direct Strength Method format. This paper presents the details of this experimental study on the web crippling behaviour and strengths of LiteSteel beams under EOF and IOF load cases and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two stage Pulse Tube Cryocooler (PTC) is designed and fabricated which reaches a no-load temperature of 2.5K in the second stage and similar to 60 K in the first stage respectively. The system provides a cooling power of similar to 250 mW at 5K in the second stage. Stainless steel meshes (size 200) and lead (Pb) granules are used as the first stage regenerator materials and combination of Pb with Er3Ni / HoCu2 are used as the second stage regenerator materials. The system operates at 1.6 Hz using a 6 kW water cooled helium compressor. Studies conducted by varying the dimensions of Pulse Tubes and regenerators show that the dimensions of the Pulse Tubes are more critical to the performance of the Cryocooler than those of the regenerators. Experimental studies show that the optimum volume ratios of Er3Ni to Pb and HoCu2 to Pb in the second stage regenerator should be 3:2 and 2:3 respectively for the best performance. Further, systems with HoCu2 performed better than those with Er3Ni. The theoretical analysis of the system has been carried out using a simple isothermal model. The experimentally measured cooling powers are in good agreement with the theoretical predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric aerosol particles have significant climatic effects. Secondary new particle formation is a globally important source of these particles. Currently, the mechanisms of particle formation and the vapours participating in this process are, however, not truly understood. The recently developed Neutral cluster and Air Ion Spectrometer (NAIS) was widely used in field studies of atmospheric particle formation. The NAIS was calibrated and found to be in adequate agreement with the reference instruments. It was concluded that NAIS can be reliably used to measure ions and particles near the sizes where the atmospheric particle formation begins. The main focus of this thesis was to study new particle formation and participation of ions in this process. To attain this objective, particle and ion formation and growth rates were studied in various environments - at several field sites in Europe, in previously rarely studied sites in Antarctica and Siberia and also in an indoor environment. New particle formation was observed at all sites were studied and the observations were used as indicatives of the particle formation mechanisms. Particle size-dependent growth rates and nucleation mode hygroscopic growth factors were examined to obtain information on the particle growth. It was found that the atmospheric ions participate in the initial steps of new particle formation, although their contribution was minor in the boundary layer. The highest atmospheric particle formation rates were observed at the most polluted sites where the role of ions was the least pronounced. Furthermore, the increase of particle growth rate with size suggested that enhancement of the growth by ions was negligible. Participation of organic vapours in the particle growth was supported by laboratory and field observations. It was addressed that secondary new particle formation can also be a significant source of indoor air particles. These results, extending over a wide variety of environments, give support to previous observations and increase understanding on new particle formation on a global scale.