956 resultados para Fama French


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esse trabalho tem como objetivo investigar a existência de um prêmio de liquidez nas ações brasileiras. Através da construção de portfólios classificados por diferentes medidas de liquidez é possível testar o diferencial esperado de retorno e o risco incorrido. O retorno esperado do portfólio construído com ações menos líquidas é significantemente superior ao retorno do portfólio construído com as mais líquidas e as medidas convencionais de risco (mercado e fatores Fama-French) não explicam este excesso de retorno. Foram testadas diferentes medidas de liquidez sendo a metodologia proposta por Hwang e Lu (2007) aquela onde o efeito é mais considerável. Em conjunto, as evidências mostram a existência de um prêmio de liquidez no Brasil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esse trabalho é uma aplicação do modelo intertemporal de apreçamento de ativos desenvolvido por Campbell (1993) e Campbell e Vuolteenaho (2004) para as carteiras de Fama-French 2x3 brasileiras no period de janeiro de 2003 a abril de 2012 e para as carteiras de Fama-French 5x5 americanas em diferentes períodos. As varíaveis sugeridas por Campbell e Vuolteenaho (2004) para prever os excessos de retorno do mercado acionário americano no period de 1929 a 2001 mostraram-se também bons preditores de excesso de retorno para o mercado brasileiro no período recente, com exceção da inclinação da estrutura a termo das taxas de juros. Entretanto, mostramos que um aumento no small stock value spread indica maior excesso de retorno no futuro, comportamento que não é coerente com a explicação para o prêmio de valor sugerida pelo modelo intertemporal. Ainda, utilizando os resíduos do VAR preditivo para definir o risco de choques de fluxo de caixa e de choques nas taxas de desconto das carteiras de teste, verificamos que o modelo intertemporal resultante não explica adequadamente os retornos observados. Para o mercado norte-americano, concluímos que a abilidade das variáveis propostas para explicar os excessos de retorno do mercado varia no tempo. O sucesso de Campbell e Vuolteenaho (2004) em explicar o prêmio de valor para o mercado norte-americano na amostra de 1963 a 2001 é resultado da especificação do VAR na amostra completa, pois mostramos que nenhuma das varíaveis é um preditor de retorno estatisticamente significante nessa sub-amostra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo dessa dissertação é analisar o impacto dos movimentos inesperados de variáveis macroeconômicas nos retornos das ações de empresas de diferentes setores. As variáveis macroeconômicas estudadas serão: produto, juros, inflação e preço de commodities. Estudam-se alguns modelos através de diferentes técnicas de regressão para se chegar àquele que tem a melhor especificação. Com o objetivo de melhorar o poder de explicação dos modelos são utilizados os três fatores de Fama e French como variáveis explicativas e outro modelo que além dos fatores de Fama e French incluiu também momentum. Procura-se analisar a magnitude do impacto dos movimentos inesperados das variáveis macroeconômicas e suas relevâncias estatísticas a cada setor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Usamos uma série de ADRs de países da América Latina para replicar o estudo de Easley, Hvidkjaer e O’Hara (2002) sobre o efeito da negociação com informação diferenciada nos retornos dos ativos financeiros. Estimamos a probabilidade de negociação com informação diferenciada (PIN) e testamos a existência de um risco informacional sistemático em um modelo de apreçamento do tipo Fama-French. O principal resultado encontrado foi que o PIN médio dos ADRs latino americanos é maior que o PIN médio das empresas dos Estados Unidos. Entretanto, não conseguimos estabelecer uma relação clara entre o retorno dos ADRs e a sua respectiva probabilidade de negociação com informação diferenciada, sugerindo que a tecnologia de apreçamento adota não é especialmente adequada.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a new novel to calculate tail risks incorporating risk-neutral information without dependence on options data. Proceeding via a non parametric approach we derive a stochastic discount factor that correctly price a chosen panel of stocks returns. With the assumption that states probabilities are homogeneous we back out the risk neutral distribution and calculate five primitive tail risk measures, all extracted from this risk neutral probability. The final measure is than set as the first principal component of the preliminary measures. Using six Fama-French size and book to market portfolios to calculate our tail risk, we find that it has significant predictive power when forecasting market returns one month ahead, aggregate U.S. consumption and GDP one quarter ahead and also macroeconomic activity indexes. Conditional Fama-Macbeth two-pass cross-sectional regressions reveal that our factor present a positive risk premium when controlling for traditional factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This event study investigates the impact of the Japanese nuclear disaster in Fukushima-Daiichi on the daily stock prices of French, German, Japanese, and U.S. nuclear utility and alternative energy firms. Hypotheses regarding the (cumulative) abnormal returns based on a three-factor model are analyzed through joint tests by multivariate regression models and bootstrapping. Our results show significant abnormal returns for Japanese nuclear utility firms during the one-week event window and the subsequent four-week post-event window. Furthermore, while French and German nuclear utility and alternative energy stocks exhibit significant abnormal returns during the event window, we cannot confirm abnormal returns for U.S. stocks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This empirical study employs a different methodology to examine the change in wealth associated with mergers and acquisitions (M&As) for US firms. Specifically, we employ the standard CAPM, the Fama-French three-factor model and the Carhart four-factor models within the OLS and GJR-GARCH estimation methods to test the behaviour of the cumulative abnormal returns (CARs). Whilst the standard CAPM captures the variability of stock returns with the overall market, the Fama-French factors capture the risk factors that are important to investors. Additionally, augmenting the Fama-French three-factor model with the Carhart momentum factor to generate the four-factor captures additional pricing elements that may affect stock returns. Traditionally, estimates of abnormal returns (ARs) in M&As situations rely on the standard OLS estimation method. However, the standard OLS will provide inefficient estimates of the ARs if the data contain ARCH and asymmetric effects. To minimise this problem of estimation efficiency we re-estimated the ARs using GJR-GARCH estimation method. We find that there is variation in the results both as regards the choice models and estimation methods. Besides these variations in the estimated models and the choice of estimation methods, we also tested whether the ARs are affected by the degree of liquidity of the stocks and the size of the firm. We document significant positive post-announcement cumulative ARs (CARs) for target firm shareholders under both the OLS and GJR-GARCH methods across all three methodologies. However, post-event CARs for acquiring firm shareholders were insignificant for both sets of estimation methods under the three methodologies. The GJR-GARCH method seems to generate larger CARs than those of the OLS method. Using both market capitalization and trading volume as a measure of liquidity and the size of the firm, we observed strong return continuations in the medium firms relative to small and large firms for target shareholders. We consistently observed market efficiency in small and large firm. This implies that target firms for small and large firms overreact to new information resulting in a more efficient market. For acquirer firms, our measure of liquidity captures strong return continuations for small firms under the OLS estimates for both CAPM and Fama-French three-factor models, whilst under the GJR-GARCH estimates only for Carhart model. Post-announcement bootstrapping simulated CARs confirmed our earlier results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liquidity is an important attribute of an asset that investors would like to take into consideration when making investment decisions. However, the previous empirical evidence whether liquidity is a determinant of stock return is not unanimous. This dissertation provides a very comprehensive study about the role of liquidity in asset pricing using the Fama-French (1993) three-factor and Kraus and Litzenberger (1976) three-moment CAPM as models for risk adjustment. The relationship between liquidity and well-known determinants of stock returns such as size and book-to-market are also investigated. This study examines the liquidity and asset pricing issues for both intertemporal as well as cross-sectional data. ^ The results indicate an existence of a liquidity premium, i.e., less liquid stocks would demand higher rate of return than more liquid stocks. More specifically, a drop of 1 percent in liquidity is associated with a higher rate of return of about 2 to 3 basis points per month. Further investigation reveals that neither the Fama-French three-factor model nor the three-moment CAPM captures the liquidity premium. Finally, the results show that well-known determinants of stock return such as size and book-to-market do not serve as proxy for liquidity. ^ Overall, this dissertation shows that a liquidity premium exists in the stock market and that liquidity is a distinct effect, and is not influenced by the presence of non-market factors, market factors and other stock characteristics.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The number of dividend paying firms has been on the decline since the popularity of stock repurchases in the 1980s, and the recent financial crisis has brought about a wave of dividend reductions and omissions. This dissertation examined the U.S. firms and American Depository Receipts that are listed on the U.S. equity exchanges according to their dividend paying history in the previous twelve quarters. While accounting for the state of the economy, the firm’s size, profitability, earned equity, and growth opportunities, it determines whether or not the firm will pay a dividend in the next quarter. It also examined the likelihood of a dividend change. Further, returns of firms were examined according to their dividend paying history and the state of the economy using the Fama-French three-factor model. Using forward, backward, and step-wise selection logistic regressions, the results show that firms with a history of regular and uninterrupted dividend payments are likely to continue to pay dividends, while firms that do not have a history of regular dividend payments are not likely to begin to pay dividends or continue to do so. The results of a set of generalized polytomous logistic regressions imply that dividend paying firms are more likely to reduce dividend payments during economic expansions, as opposed to recessions. Also the analysis of returns using the Fama-French three factor model reveals that dividend paying firms are earning significant abnormal positive returns. As a special case, a similar analysis of dividend payment and dividend change was applied to American Depository Receipts that trade on the NYSE, NASDAQ, and AMEX exchanges and are issued by the Bank of New York Mellon. Returns of American Depository Receipts were examined using the Fama-French two-factor model for international firms. The results of the generalized polytomous logistic regression analyses indicate that dividend paying status and economic conditions are also important for dividend level change of American Depository Receipts, and Fama-French two-factor regressions alone do not adequately explain returns for these securities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the last three decades, the Capital Asset Pricing Model (CAPM) has been a dominant model to calculate expected return. In early 1990% Fama and French (1992) developed the Fama and French Three Factor model by adding two additional factors to the CAPM. However even with these present models, it has been found that estimates of the expected return are not accurate (Elton, 1999; Fama &French, 1997). Botosan (1997) introduced a new approach to estimate the expected return. This approach employs an equity valuation model to calculate the internal rate of return (IRR) which is often called, 'implied cost of equity capital" as a proxy of the expected return. This approach has been gaining in popularity among researchers. A critical review of the literature will help inform hospitality researchers regarding the issue and encourage them to implement the new approach into their own studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A plethora of recent literature on asset pricing provides plenty of empirical evidence on the importance of liquidity, governance and adverse selection of equity on pricing of assets together with more traditional factors such as market beta and the Fama-French factors. However, literature has usually stressed that these factors are priced individually. In this dissertation we argue that these factors may be related to each other, hence not only individual but also joint tests of their significance is called for. ^ In the three related essays, we examine the liquidity premium in the context of the finer three-digit SIC industry classification, joint importance of liquidity and governance factors as well as governance and adverse selection. Recent studies by Core, Guay and Rusticus (2006) and Ben-Rephael, Kadan and Wohl (2010) find that governance and liquidity premiums are dwindling in the last few years. One reason could be that liquidity is very unevenly distributed across industries. This could affect the interpretation of prior liquidity studies. Thus, in the first chapter we analyze the relation of industry clustering and liquidity risk following a finer industry classification suggested by Johnson, Moorman and Sorescu (2009). In the second chapter, we examine the dwindling influence of the governance factor if taken simultaneously with liquidity. We argue that this happens since governance characteristics are potentially a proxy for information asymmetry that may be better captured by market liquidity of a company's shares. Hence, we jointly examine both the factors, namely, governance and liquidity - in a series of standard asset pricing tests. Our results reconfirm the importance of governance and liquidity in explaining stock returns thus independently corroborating the findings of Amihud (2002) and Gompers, Ishii and Metrick (2003). Moreover, governance is not subsumed by liquidity. Lastly, we analyze the relation of governance and adverse selection, and again corroborate previous findings of a priced governance factor. Furthermore, we ascertain the importance of microstructure measures in asset pricing by employing Huang and Stoll's (1997) method to extract an adverse selection variable and finding evidence for its explanatory power in four-factor regressions.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The value premium is well established in empirical asset pricing, but to date there is little understanding as to its fundamental drivers. We use a stochastic earnings valuation model to establish a direct link between the volatility of future earnings growth and firm value. We illustrate that risky earnings growth affects growth and value firms differently. We provide empirical evidence that the volatility of future earnings growth is a significant determinant of the value premium. Using data on individual firms and characteristic-sorted test portfolios, we also find that earnings growth volatility is significant in explaining the cross-sectional variation of stock returns. Our findings imply that the value premium is the rational consequence of accounting for risky earnings growth in the firm valuation process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.