955 resultados para Failure Mode Transition


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unrepaired defects in the annulus fibrosus of intervertebral disks are associated with degeneration and persistent back pain. A clinical need exists for a disk repair strategy that can seal annular defects, be easily delivered during surgical procedures, and restore biomechanics with low risk of herniation. Multiple annulus repair strategies were developed using poly(trimethylene carbonate) scaffolds optimized for cell delivery, polyurethane membranes designed to prevent herniation, and fibrin-genipin adhesive tuned to annulus fibrosus shear properties. This three-part study evaluated repair strategies for biomechanical restoration, herniation risk and failure mode in torsion, bending and compression at physiological and hyper-physiological loads using a bovine injury model. Fibrin-genipin hydrogel restored some torsional stiffness, bending ROM and disk height loss, with negligible herniation risk and failure was observed histologically at the fibrin-genipin mid-substance following rigorous loading. Scaffold-based repairs partially restored biomechanics, but had high herniation risk even when stabilized with sutured membranes and failure was observed histologically at the interface between scaffold and fibrin-genipin adhesive. Fibrin-genipin was the simplest annulus fibrosus repair solution evaluated that involved an easily deliverable adhesive that filled irregularly-shaped annular defects and partially restored disk biomechanics with low herniation risk, suggesting further evaluation for disk repair may be warranted. Statement of significance Lower back pain is the leading cause of global disability and commonly caused by defects and failure of intervertebral disk tissues resulting in herniation and compression of adjacent nerves. Annulus fibrosus repair materials and techniques have not been successful due to the challenging mechanical and chemical microenvironment and the needs to restore biomechanical behaviors and promote healing with negligible herniation risk while being delivered during surgical procedures. This work addressed this challenging biomaterial and clinical problem using novel materials including an adhesive hydrogel, a scaffold capable of cell delivery, and a membrane to prevent herniation. Composite repair strategies were evaluated and optimized in quantitative three-part study that rigorously evaluated disk repair and provided a framework for evaluating alternate repair techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the results of cyclic loading tests on two large-scale reinforced concrete structural walls that were conducted at Purdue University. One of the walls had confinement reinforcement meeting ACI-318-11 requirements while the other wall did not have any confinement reinforcement. The walls were tested as part of a larger study aimed at indentifying parameters affecting failure modes observed to limit the drift capacity of structural walls in Chile during the Maule Earthquake of 2010. These failure modes include out-of-plane buckling (of the wall rather tan individual reinforcing bars), compression failure, and bond failure. This paper discusses the effects of confinement on failure mode. Distributions of unit strain and curvature obtained with a dense array of non-contact coordinate-tracking targets are also presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

© IMechE 2014. Controlled auto-ignition, also known as homogeneous charge compression ignition, has been the subject of extensive research because of their ability to provide simultaneous reductions in fuel consumption and NOx emissions from a gasoline engine. However, due to its limited operation range, switching between controlled auto-ignition and spark ignition combustion is needed to cover the complete operating range of a gasoline engine for passenger car applications. Previous research has shown that the spark ignition -controlled auto-ignition hybrid combustion (SCHC) has the potential to control the ignition timing and heat release process during the mode transition operations. However, it was found that the SCHC is often characterized with large cycle-to-cycle variations. The cyclic variations in the in-cylinder pressure are particularly noticeable in terms of both their peak values and timings while the coefficient of variation in the indicated mean effective pressure is much less. In this work, the cyclic variations in SCHC operations were analyzed by means of in-cylinder pressure and heat release analysis in a single-cylinder gasoline engine equipped with Variable Valve Actuation (VVA) systems. First, characteristics of the in-cylinder pressure traces during the spark ignition-controlled auto-ignition hybrid combustion operation are presented and their heat release processes analyzed. In order to clarify the contribution to heat release and cyclic variation in SCHC, a new method is introduced to identify the occurrence of auto-ignition combustion and its subsequent heat release process. Based on the new method developed, the characteristics of cyclic variations in the maximum rate of pressure rise and different stages of heat release process have been analyzed and discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2016.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To evaluate the microtensile bond strength (µTBS) of a fluoride-containing adhesive system submitted to a pH-cycling and storage time regimen for primary outcomes. As secondary outcomes the fluoride released amount was evaluated. Twelve dentin surfaces from sound third molar were divided into 2 groups according to adhesive systems: Clearfil SE Protect (PB) and Clearfil SE Bond (SE). Sticks obtained (1.0 mm2) from teeth were randomly divided into 3 subgroups according to storage regimen model: immediate (24h); 5-month deionized water (W); and pH-cycling model (C). All sticks were tested for µTBS in a universal testing machine. Fluoride concentration was obtained from 1-4 days and 30-day in W and 1-4 days in demineralization (DE)/remineralization (RE) solutions from C, using a fluoride-specific electrode. µTBS and fluoride released data were, respectively, submitted to ANOVA in a split plot design and Tukey, and Friedman' tests (a=0.05). There was no significant interaction between adhesive system and storage regimen for µTBS. W showed the lowest µTBS values. There was no significant difference between 24 h and C models for µTBS. There was no significant difference between adhesive systems. Failure mode was predominantly cohesive within composite for the 24 h and W, for the C group it was mixed for SE and cohesive within composite for PB adhesive system. Fluoride concentrations in the DE/RE solutions were less than 0.03125 ppm and not detected in W. In conclusion, the fluoride-containing adhesive system performed similarly to the regular one. Hydrolytic degradation is the main problem with both adhesive systems, regardless of fluoride contents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study evaluated the effect of specimens' design and manufacturing process on microtensile bond strength, internal stress distributions (Finite Element Analysis - FEA) and specimens' integrity by means of Scanning Electron Microscopy (SEM) and Laser Scanning Confocal Microscopy (LCM). Excite was applied to flat enamel surface and a resin composite build-ups were made incrementally with 1-mm increments of Tetric Ceram. Teeth were cut using a diamond disc or a diamond wire, obtaining 0.8 mm² stick-shaped specimens, or were shaped with a Micro Specimen Former, obtaining dumbbell-shaped specimens (n = 10). Samples were randomly selected for SEM and LCM analysis. Remaining samples underwent microtensile test, and results were analyzed with ANOVA and Tukey test. FEA dumbbell-shaped model resulted in a more homogeneous stress distribution. Nonetheless, they failed under lower bond strengths (21.83 ± 5.44 MPa)c than stick-shaped specimens (sectioned with wire: 42.93 ± 4.77 MPaª; sectioned with disc: 36.62 ± 3.63 MPa b), due to geometric irregularities related to manufacturing process, as noted in microscopic analyzes. It could be concluded that stick-shaped, nontrimmed specimens, sectioned with diamond wire, are preferred for enamel specimens as they can be prepared in a less destructive, easier, and more precise way.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multicomponent white cast iron is a new alloy that belongs to system Fe-C-Cr-W-Mo-V, and because of its excellent wear resistance it is used in the manufacture of hot rolling mills rolls. To date, this alloy has been processed by casting, powder metallurgy, and spray forming. The high-velocity oxyfuel process is now also considered for the manufacture of components with this alloy. The effects of substrate, preheating temperature, and coating thickness on bond strength of coatings have been determined. Substrates of AISI 1020 steel and of cast iron with preheating of 150 A degrees C and at room temperature were used to apply coatings with 200 and 400 mu m nominal thickness. The bond strength of coatings was measured with the pull-off test method and the failure mode by scanning electron microscopic analysis. Coatings with thickness of 200 mu m and applied on substrates of AISI 1020 steel with preheating presented bond strength of 87 +/- A 4 MPa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: The objective of this study was to evaluate the influence of different Er:YAG laser (lambda = 2.94 mu m) energy parameters on the microtensile bond strength (mu TBS) and superficial morphology of bovine enamel bleached with 16% carbamide peroxide. Background: Laser irradiation could improve adhesion to bleached enamel surfaces. Methods: Sixty bovine enamel blocks (7x3x3 mm(3)) were randomly assigned to six groups according to enamel preparation procedures (n = 10): G1-bleaching and Er:YAG laser irradiation with 25.52 J/cm(2) (laser A, LA); G2-bleaching and Er:YAG laser irradiation with 4.42J/cm(2) (laser B, LB); G3-bleaching; G4-Er:YAG laser irradiation with 25.52 J/cm(2); G5-Er:YAG laser irradiation with 4.42J/cm(2); G6-control, no treatment. G1 to G3 were bleached for 6 h during 21 days. Afterwards, enamel surfaces in all groups were slightly abraded with 600-grit SiC papers and G1, G2, G4 and G5 were irradiated according to each protocol. Enamel blocks were then restored with an etch-and-rinse adhesive system and a 4-mm thick composite buildup was made in two increments (n = 9). After 24 h, restored blocks were serially sectioned with a cross-section area of similar to 1 mm(2) at the bonded interface and tested in tension in a universal testing machine (1 mm/min). Failure mode was determined at a magnification of x100 using a stereomicroscope. One treated block of each group was selected for scanning electron microscopy (SEM) analysis. mu TBS data were analyzed by two-way ANOVA and no statistical differences were observed among groups. Results: Mean bond strengths (SD) in MPa were: G1-30.4(6.2); G2-27.9(8.5); G3-32.3(3.9); G4-23.7(5.8); G5-29.3(6.0); G6-29.1(6.1). A large number of adhesive failures was recorded for bleached and irradiated enamel surfaces. Conclusions: Bleached enamel surfaces mu TBS values were not significantly different from those of unbleached enamel. Even though Er:YAG laser irradiation with both parameters had no influence on mu TBS for bleached and unbleached enamel, SEM analysis revealed that Er:YAG laser irradiation with 25.52J/cm(2) should not be recommended, as enamel ablation was observed, whereas irradiation with 4.42J/cm(2) did not promote any remarkable changes on enamel surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The glued- laminated lumber (glulam) technique is an efficient process for the rational use of wood. Fiber-reinforced polymer (FRPs) associated with glulam beams provide significant improvements in strength and stiffness and alter the failure mode of these structural elements. In this context, this paper presents guidance for glulam beam production, an experimental analysis of glulam beams made of Pinus caribea var. hondurensis species without and with externally-bonded FRP and theoretical models to evaluate reinforced glulam beams (bending strength and stiffness). Concerning the bending strength of the beams, this paper aims only to analyze the limit state of ultimate strength in compression and tension. A specific disposal was used in order to avoid lateral buckling, once the tested beams have a higher ratio height-to-width. The results indicate the need of production control so as to guarantee a higher efficiency of the glulam beams. The FRP introduced in the tensile section of glulam beams resulted in improvements on their bending strength and stiffness due to the reinforcement thickness increase. During the beams testing, two failure stages were observed. The first was a tensile failure on the sheet positioned under the reinforcement layer, while the second occurred as a result of a preliminary compression yielding on the upper side of the lumber, followed by both a shear failure on the fiber-lumber interface and a tensile failure in wood. The model shows a good correlation between the experimental and estimated results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The results of a combined experimental program and numerical modeling program to evaluate the behavior of ungrouted hollow concrete blocks prisms under uniaxial compression are addressed. In the numerical program, three distinct approaches have been considered using a continuum model with a smeared approach, namely plane-stress, plane-strain and three-dimensional conditions. The response of the numerical simulations is compared with experimental data of masonry prisms using concrete blocks specifically designed for this purpose. The elastic and inelastic parameters were acquired from laboratory tests on concrete and mortar samples that constitute the blocks and the bed joint of the prisms. The results from the numerical simulations are discussed with respect to the ability to reproduce the global response of the experimental tests, and with respect to the failure behavior obtained. Good agreement between experimental and numerical results was found for the peak load and for the failure mode using the three-dimensional model, on four different sets of block/mortar types. Less good agreement was found for plain stress and plain strain models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The most-used refrigeration system is the vapor-compression system. In this cycle, the compressor is the most complex and expensive component, especially the reciprocating semihermetic type, which is often used in food product conservation. This component is very sensitive to variations in its operating conditions. If these conditions reach unacceptable levels, failures are practically inevitable. Therefore, maintenance actions should be taken in order to maintain good performance of such compressors and to avoid undesirable stops of the system. To achieve such a goal, one has to evaluate the reliability of the system and/or the components. In this case, reliability means the probability that some equipment cannot perform their requested functions for an established time period, under defined operating conditions. One of the tools used to improve component reliability is the failure mode and effect analysis (FMEA). This paper proposes that the methodology of FMEA be used as a tool to evaluate the main failures found in semihermetic reciprocating compressors used in refrigeration systems. Based on the results, some suggestions for maintenance are addressed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The combined-cycle gas and steam turbine power plant presents three main pieces of equipment: gas turbines, steam turbines and heat recovery steam generator (HRSG). In case of HRSG failure the steam cycle is shut down, reducing the power plant output. Considering that the technology for design, construction and operation of high capacity HRSGs is quite recent its availability should be carefully evaluated in order to foresee the performance of the power plant. This study presents a method for reliability and availability evaluation of HRSGs installed in combined-cycle power plant. The method`s first step consists in the elaboration of the steam generator functional tree and development of failure mode and effects analysis. The next step involves a reliability and availability analysis based on the time to failure and time to repair data recorded during the steam generator operation. The third step, aiming at availability improvement, recommends the fault-tree analysis development to identify components the failure (or combination of failures) of which can cause the HRSG shutdown. Those components maintenance policy can be improved through the use of reliability centered maintenance (RCM) concepts. The method is applied on the analysis of two HRSGs installed in a 500 MW combined-cycle power plant. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose The aim of this study was to evaluate the ability of bond strength tests to accurately measure the bond strength of fiber posts luted into root canals Materials and Methods The test methods studied were hourglass microtensile (HM), push-out (PS), modified push out (MP) and pull out (PL) The evaluated parameters were bond strength values, reliability (using Weibull analysis), failure mode (using confocal microscopy), and stress distribution (using finite element analysis) Forty human intact single rooted and endodontically treated teeth were divided into four groups Each group was assigned one of the test methods The samples in the HM and PS groups were 1 0 +/- 0 1 mm thick, the HM samples were hourglass shaped and the PS samples were disk shaped For the PL and MP groups, each 1 mm dentin slice was luted with a fiber post piece Three dimensional models of each group were made and stress was analyzed based on Von Mises criteria Results PL provided the highest values of bond strength followed by MP both of which also had greater amounts of adhesive failures PS showed the highest frequency of cohesive failures MP showed a more homogeneous stress distribution and a higher Weibull modulus Conclusion The specimen design directly influences the biomechanical behavior of bond strength tests

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To evaluate in vitro the microshear bond strength of adhesive systems applied to dentin according to manufacturers` instructions, associated or not with a hydrophobic layer of unfilled resin. Materials and Methods: Six self-etching adhesives (Clearfil SE Bond, Kuraray Medical; AdheSE, lvoclar Vivadent; Xeno III, Dentsply; I Bond, Heraeus-Kulzer; Bond Force, Tokuyama; Futurabond DC, Voco) were tested. The labial dentin of sixty bovine incisors was exposed, and the teeth were divided into two groups according to the application or not of an extra hydrophobic resin layer (Scotchbond Multi Purpose Plus, bottle 3). Six composite cylinders (Filtek Z250, 3M ESPE) were built up on each treated surface. Specimens were stored in distilled water at 37 C for 24 h and then subjected to the microshear bond strength test in a universal testing machine at a crosshead speed of 0.5 mm/min. Microshear bond strength values were analyzed by 2-way ANOVA and Tukey`s post-hoc test. Failure mode was determined using a stereomicroscope under 20X magnification. Results: The application of the hydrophobic resin layer did not affect bond strength, except for AdheSE. However, the bond strengths with the hydrophobic layer were similar among the six tested systems (Clearfil: 17.1 +/- 7.9; AdheSE: 14.5 +/- 7.1; Xeno III: 12.8 +/- 7.7; I Bond: 9.5 +/- 5.8; Bond Force: 17.5 +/- 4.1; Futurabond: 7.7 +/- 2.3). When used as recommended by the manufacturers, Bond Force presented statistically higher bond strength than AdheSE and I Bond (p < 0.05) (Clearfil 10.4 +/- 4.9; AdheSE 1.6 +/- 1.6; Xeno III: 9.0 +/- 3.8; I Bond: 3.0 +/- 1.5; Bond Force: 14 +/- 3.9; Futurabond: 8.8 +/- 3.8). Failure mode was predominantly adhesive. Conclusion: The bond strength of the self-etching systems tested was not significantly affected by the application of a hydrophobic layer, but a significant improvement was observed in AdheSE.