995 resultados para FURFURYL ALCOHOL


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The glassy carbon is a material with a huge technological evolution. Due to its lightness, biocompatibility and their thermal and electrical properties this material finds applications in several industrial fields such as electronics, medical, aerospace and chemical. In order to explore the conductive properties of glassy carbon for use as modified electrodes, the present work aims the processing of monolithic and reticulated glassy carbon with colloidal copper for use in electrochemical applications. First, the best parameters for the cure of furfuryl alcohol resin doped were established through viscosimetry measurements and pressurized differential scanning calorimetry. The analysis of the micrographs of the cured resins show that copper concentrations above 3% weight, generate higher porosity in the material. The characterizations of the monolithic and reticulated glassy carbon resulting from carbonization were performed by scanning electron microscopy (SEM), Raman and Electrochemical impedance spectroscopy, and although it was not possible to detect the presence of copper by SEM, the influence of these particles have been observed by Raman and FT-IR spectra and electrochemical behavior of the material. The decrease in conductivity of monolithic and reticulated glassy carbon in the presence of copper may be related to the defects caused by the presence of copper in the structure of the material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The monolithic glassy carbon is a carbonaceous material, isotropic, non graphitizable obtained by means of carbonization of resins up to 1000 °C. The good physicochemical properties make this material applied in several areas such as aerospace, medicine, electronics, chemistry, among others. It has generally been processed from the use of phenolic and furfuryl alcohol resins. These resins have high crosslink density and high fixed carbon content and are therefore widely applied in aerospace. The combination phenol / furfuryl alcohol resins search for obtaining the most suitable process for the glass-like carbon processing with phenolic resins currently available and of lower cost and easier to synthesize than the furfuryl alcohol resin. The main objective of this work is to obtain a phenol-furfuryl resin with high fixed carbon content combined with low porosity of the material. Different synthesis routes have been adopted along with thermal analysis techniques, FTIR and image analysis. The resin obtained through partial synthesis process presented the characteristics sought in this work

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composites of high-density biopolyethylene (HDBPE) obtained from ethylene derived from sugarcane ethanol and curaua fibers were formed by first mixing in an internal mixer followed by thermopressing. Additionally, hydroxyl-terminated polybutadiene (LHPB), which is usually used as an impact modifier, was mainly used in this study as a compatibilizer agent. The fibers, HDBPE and LHPB were also compounded using an inter-meshing twin-screw extruder and, subsequently, injection molded. The presence of the curaua fibers enhanced some of the properties of the HDBPE, such as its flexural strength and storage modulus. SEM images showed that the addition of LHPB improved the adhesion of the fiber/matrix at the interface, which increased the impact strength of the composite. The higher shear experienced during processing probably led to a more homogeneous distribution of fibers, making the composite that was prepared through extruder/injection molding more resistant to impact than the composite processed by the internal mixer/thermopressing. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A strategy to enhance the thermal stability of C/SiO2 hybrids for the O2-based oxidative dehydrogenation of ethylbenzene to styrene (ST) by P addition is proposed. The preparation consists of the polymerization of furfuryl alcohol (FA) on a mesoporous precipitated SiO2. The polymerization is catalyzed by oxalic acid (OA) at 160 °C (FA:OA = 250). Phosphorous was added as H3PO4 after the polymerization and before the pyrolysis that was carried out at 700 °C and will extend the overall activation procedure. Estimation of the apparent activation energies reveals that P enhances the thermal stability under air oxidation, which is a good indication for the ODH tests. Catalytic tests show that the P/C/SiO2 hybrids are readily active, selective and indeed stable in the applied reactions conditions for 60 h time on stream. Coke build-up during the reaction attributed to the P-based acidity is substantial, leading to a reduction of the surface area and pore volume. The comparison with a conventional MWCNT evidences that the P/C/SiO2 hybrids are more active and selective at high temperatures (450–475 °C) while the difference becomes negligible at lower temperature. However, the comparison with reference P/SiO2 counterparts shows a very similar yield than the hybrids but more selective to ST. The benefit of the P/C/SiO2 hybrid is the lack of stabilization period, which is observed for the P/SiO2 to create an active coke overlayer. For long term operation, P/SiO2 appears to be a better choice in terms of selectivity, which is crucial for commercialization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The selective liquid phase hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on SiO2, ZnO, γ-Al2O3, CeO2 is reported under extremely mild conditions. Ambient hydrogen pressure, and temperatures as low as 50 °C are shown sufficient to drive furfural hydrogenation with high conversion and >99% selectivity to furfuryl alcohol. Strong support and solvent dependencies are observed, with methanol and n-butanol proving excellent solvents for promoting high furfuryl alcohol yields over uniformly dispersed 4 nm Pt nanoparticles over MgO, CeO2 and γ-Al2O3. In contrast, non-polar solvents conferred poor furfural conversion, while ethanol favored acetal by-product formation. Furfural selective hydrogenation can be tuned through controlling the oxide support, reaction solvent and temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The presences of heavy metals, organic contaminants and natural toxins in natural water bodies pose a serious threat to the environment and the health of living organisms. Therefore, there is a critical need to identify sustainable and environmentally friendly water treatment processes. In this dissertation, I focus on the fundamental studies of advanced oxidation processes and magnetic nano-materials as promising new technologies for water treatments. Advanced oxidation processes employ reactive oxygen species (ROS) which can lead to the mineralization of a number of pollutants and toxins. The rates of formation, steady-state concentrations, and kinetic parameters of hydroxyl radical and singlet oxygen produced by various TiO2 photocatalysts under UV or visible irradiations were measured using selective chemical probes. Hydroxyl radical is the dominant ROS, and its generation is dependent on experimental conditions. The optimal condition for generation of hydroxyl radical by of TiO2 coated glass microspheres is studied by response surface methodology, and the optimal conditions are applied for the degradation of dimethyl phthalate. Singlet oxygen (1O2) also plays an important role for advanced processes, so the degradation of microcystin-LR by rose bengal, an 1O2 sensitizer was studied. The measured bimolecular reaction rate constant between MC-LR and 1O2 is ∼ 106 M-1 s-1 based on competition kinetics with furfuryl alcohol. The typical adsorbent needs separation after the treatment, while magnetic iron oxides can be easily removed by a magnetic field. Maghemite and humic acid coated magnetite (HA-Fe3O4) were synthesized, characterized and applied for chromium(VI) removal. The adsorption of chromium(VI) by maghemite and HA-Fe3O4 follow a pseudo-second-order kinetic process. The adsorption of chromium(VI) by maghemite is accurately modeled using adsorption isotherms, and solution pH and presence of humic acid influence adsorption. Humic acid coated magnetite can adsorb and reduce chromium(VI) to non-toxic chromium (III), and the reaction is not highly dependent on solution pH. The functional groups associated with humic acid act as ligands lead to the Cr(III) complex via a coupled reduction-complexation mechanism. Extended X-ray absorption fine structure spectroscopy demonstrates the Cr(III) in the Cr-loaded HA-Fe 3O4 materials has six neighboring oxygen atoms in an octahedral geometry with average bond lengths of 1.98 Å.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hydrogenation of biomass-derived molecules is a key reaction in upgrading these compounds into chemicals and fuels. The use of catalytic transfer hydrogenation, employing alcohols as hydrogen sources, offers an alternative approach to this process, avoiding the use of H2 under high pressure and precious metal catalysts. In this work, the gas-phase conversion of biomass-derived furfural into furfuryl alcohol and 2-methylfuran was studied, using methanol as the H-transfer agent and CaO-based catalysts. The results obtained with this catalyst were compared with those obtained by using MgO, which due to its basic properties and to its high surface area, at present appears to be among the best basic catalysts used for the conversion of biomass-derived molecules. Pure CaO, despite having a very low surface area, compared to MgO catalyst (5 m2/g vs. 172 m2/g), was shown to reduce furfural into its corresponding unsaturated alcohol at 350°C, thus allowing selective H-transfer from methanol to the substrate. These results highlight the potential application of the H-transfer reaction over CaO based catalysts as an efficient process for the selective reduction of biomass-derived molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The change in the carbonaceous skeleton of nanoporous carbons during their activation has received limited attention, unlike its counterpart process in the presence of an inert atmosphere. Here we adopt a multi-method approach to elucidate this change in a poly(furfuryl alcohol)-derived carbon activated using cyclic application of oxygen saturation at 250 °C before its removal (with carbon) at 800 °C in argon. The methods used include helium pycnometry, synchrotron-based X-ray diffraction (XRD) and associated radial distribution function (RDF) analysis, transmission electron microscopy (TEM) and, uniquely, electron energy-loss spectroscopy spectrum-imaging (EELS-SI), electron nanodiffraction and fluctuation electron microscopy (FEM). Helium pycnometry indicates the solid skeleton of the carbon densifies during activation from 78% to 93% of graphite. RDF analysis, EELS-SI, and FEM all suggest this densification comes through an in-plane growth of sp2 carbon out to the medium range without commensurate increase in order normal to the plane. This process could be termed ‘graphenization’. The exact way in which this process occurs is not clear, but TEM images of the carbon before and after activation suggest it may come through removal of the more reactive carbon, breaking constraining cross-links and creating space that allows the remaining carbon material to migrate in an annealing-like process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a multi-wavelength Raman spectroscopy study of the structural changes along the thermal annealing pathway of a poly(furfuryl alcohol) (PFA) derived nanoporous carbon (NPC). The Raman spectra were deconvoluted utilizing G, D, D′, A and TPA bands. The appropriateness of these deconvolutions was confirmed via recovery of the correct dispersive behaviours of these bands. It is proposed that the ID/IG ratio is composed of two parts: one associated with the extent of graphitic crystallites (the Tuinstra–Koenig relationship), and a second related to the inter-defect distance. This model was used to successfully determine the variation of the in-plane size and intra-plane defect density along the annealing pathway. It is proposed that the NPC skeleton evolves along the annealing pathway in two stages: below 1600 °C it was dominated by a reduction of in-plane defects with a minor crystallite growth, and above this temperature growth of the crystallites accelerates as the in-plane defect density approaches zero. A significant amount of transpolyacetylene (TPA)-like structures was found to be remaining even at 2400 °C. These may be responsible for resistance to further graphitization of the PFA-based carbon at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Typically adolescents' friends are considered a risk factor for adolescent engagement in risk-taking. This study took a more novel approach, by examining adolescent friendship as a protective factor. In particular it investigated friends' potential to intervene to reduce risk-taking. 540 adolescents (mean age 13.47 years) were asked about their intention to intervene to reduce friends' alcohol, drug and alcohol-related harms and about psychosocial factors potentially associated with intervening. More than half indicated that they would intervene in friends' alcohol, drug use, alcohol-related harms and interpersonal violence. Intervening was associated with being female, having friends engage in overall less risk-taking and having greater school connectedness. The findings provide an important understanding of increasing adolescent protective behavior as a potential strategy to reduce alcohol and drug related harms.