990 resultados para Extração de conhecimento


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A automação na gestão e análise de dados tem sido um fator crucial para as empresas que necessitam de soluções eficientes em um mundo corporativo cada vez mais competitivo. A explosão do volume de informações, que vem se mantendo crescente nos últimos anos, tem exigido cada vez mais empenho em buscar estratégias para gerenciar e, principalmente, extrair informações estratégicas valiosas a partir do uso de algoritmos de Mineração de Dados, que comumente necessitam realizar buscas exaustivas na base de dados a fim de obter estatísticas que solucionem ou otimizem os parâmetros do modelo de extração do conhecimento utilizado; processo que requer computação intensiva para a execução de cálculos e acesso frequente à base de dados. Dada a eficiência no tratamento de incerteza, Redes Bayesianas têm sido amplamente utilizadas neste processo, entretanto, à medida que o volume de dados (registros e/ou atributos) aumenta, torna-se ainda mais custoso e demorado extrair informações relevantes em uma base de conhecimento. O foco deste trabalho é propor uma nova abordagem para otimização do aprendizado da estrutura da Rede Bayesiana no contexto de BigData, por meio do uso do processo de MapReduce, com vista na melhora do tempo de processamento. Para tanto, foi gerada uma nova metodologia que inclui a criação de uma Base de Dados Intermediária contendo todas as probabilidades necessárias para a realização dos cálculos da estrutura da rede. Por meio das análises apresentadas neste estudo, mostra-se que a combinação da metodologia proposta com o processo de MapReduce é uma boa alternativa para resolver o problema de escalabilidade nas etapas de busca em frequência do algoritmo K2 e, consequentemente, reduzir o tempo de resposta na geração da rede.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The last decades have been characterized by a continuous adoption of IT solutions in the healthcare sector, which resulted in the proliferation of tremendous amounts of data over heterogeneous systems. Distinct data types are currently generated, manipulated, and stored, in the several institutions where patients are treated. The data sharing and an integrated access to this information will allow extracting relevant knowledge that can lead to better diagnostics and treatments. This thesis proposes new integration models for gathering information and extracting knowledge from multiple and heterogeneous biomedical sources. The scenario complexity led us to split the integration problem according to the data type and to the usage specificity. The first contribution is a cloud-based architecture for exchanging medical imaging services. It offers a simplified registration mechanism for providers and services, promotes remote data access, and facilitates the integration of distributed data sources. Moreover, it is compliant with international standards, ensuring the platform interoperability with current medical imaging devices. The second proposal is a sensor-based architecture for integration of electronic health records. It follows a federated integration model and aims to provide a scalable solution to search and retrieve data from multiple information systems. The last contribution is an open architecture for gathering patient-level data from disperse and heterogeneous databases. All the proposed solutions were deployed and validated in real world use cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo desta pesquisa é descrever o conhecimento divulgado sobre sustentabilidade de um grupo de empresas do setor petroquímico. Para a estruturação dos modelos de gestão das empresas, foi utilizado o Modelo Orientado para a Representação do Pensamento Humano, MORPH. Foi realizada uma pesquisa descritiva de modelos de empresas representados por frames, com regras de extração para definição dos critérios e dos objetos. Para efeito de comparação, foram escolhidas três empresas de um mesmo setor, o Petroquímico. As quais fazem parte de um programa que compartilha projetos de sustentabilidade, o Programa Em Boa Companhia da BM&F BOVESPA. Foram extraídos objetos qualitativos de sustentabilidade, comparando, quantitativamente, com os lucros das empresas. Dentre os principais resultados, observou-se de 2011 a 2012 que a Braskem teve prejuízo, enquanto que a Comgas teve lucro, sendo a partir de ambos foi extraída a mesma quantidade de objetos. Dentre as três empresas, é analisado que a Ultrapar tem o maior lucro e mais objetos que divulgam o interesse sobre sustentabilidade.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The opening of the Brazilian market of electricity and competitiveness between companies in the energy sector make the search for useful information and tools that will assist in decision making activities, increase by the concessionaires. An important source of knowledge for these utilities is the time series of energy demand. The identification of behavior patterns and description of events become important for the planning execution, seeking improvements in service quality and financial benefits. This dissertation presents a methodology based on mining and representation tools of time series, in order to extract knowledge that relate series of electricity demand in various substations connected of a electric utility. The method exploits the relationship of duration, coincidence and partial order of events in multi-dimensionals time series. To represent the knowledge is used the language proposed by Mörchen (2005) called Time Series Knowledge Representation (TSKR). We conducted a case study using time series of energy demand of 8 substations interconnected by a ring system, which feeds the metropolitan area of Goiânia-GO, provided by CELG (Companhia Energética de Goiás), responsible for the service of power distribution in the state of Goiás (Brazil). Using the proposed methodology were extracted three levels of knowledge that describe the behavior of the system studied, representing clearly the system dynamics, becoming a tool to assist planning activities

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Somente no ano de 2011 foram adquiridos mais de 1.000TB de novos registros digitais de imagem advindos de Sensoriamento Remoto orbital. Tal gama de registros, que possui uma progressão geométrica crescente, é adicionada, anualmente, a incrível e extraordinária massa de dados de imagens orbitais já existentes da superfície da Terra (adquiridos desde a década de 70 do século passado). Esta quantidade maciça de registros, onde a grande maioria sequer foi processada, requer ferramentas computacionais que permitam o reconhecimento automático de padrões de imagem desejados, de modo a permitir a extração dos objetos geográficos e de alvos de interesse, de forma mais rápida e concisa. A proposta de tal reconhecimento ser realizado automaticamente por meio da integração de técnicas de Análise Espectral e de Inteligência Computacional com base no Conhecimento adquirido por especialista em imagem foi implementada na forma de um integrador com base nas técnicas de Redes Neurais Computacionais (ou Artificiais) (através do Mapa de Características Auto- Organizáveis de Kohonen SOFM) e de Lógica Difusa ou Fuzzy (através de Mamdani). Estas foram aplicadas às assinaturas espectrais de cada padrão de interesse, formadas pelos níveis de quantização ou níveis de cinza do respectivo padrão em cada uma das bandas espectrais, de forma que a classificação dos padrões irá depender, de forma indissociável, da correlação das assinaturas espectrais nas seis bandas do sensor, tal qual o trabalho dos especialistas em imagens. Foram utilizadas as bandas 1 a 5 e 7 do satélite LANDSAT-5 para a determinação de cinco classes/alvos de interesse da cobertura e ocupação terrestre em três recortes da área-teste, situados no Estado do Rio de Janeiro (Guaratiba, Mangaratiba e Magé) nesta integração, com confrontação dos resultados obtidos com aqueles derivados da interpretação da especialista em imagens, a qual foi corroborada através de verificação da verdade terrestre. Houve também a comparação dos resultados obtidos no integrador com dois sistemas computacionais comerciais (IDRISI Taiga e ENVI 4.8), no que tange a qualidade da classificação (índice Kappa) e tempo de resposta. O integrador, com classificações híbridas (supervisionadas e não supervisionadas) em sua implementação, provou ser eficaz no reconhecimento automático (não supervisionado) de padrões multiespectrais e no aprendizado destes padrões, pois para cada uma das entradas dos recortes da área-teste, menor foi o aprendizado necessário para sua classificação alcançar um acerto médio final de 87%, frente às classificações da especialista em imagem. A sua eficácia também foi comprovada frente aos sistemas computacionais testados, com índice Kappa médio de 0,86.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de mestre em Engenharia Química e Biológica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Com a crescente popularização dos microcomputadores e da rede mundial de informação, Internet, uma enorme variedade e quantidade de informações estão se tornando acessíveis a um número cada vez maior de pessoas. Desta forma, também cresce a importância de se extrair a informação útil que está no grande conjunto das informações disponibilizadas. Hoje há muito mais dados na forma de textos eletrônicos do que em tempos passados, mas muito disto é ignorado. Nenhuma pessoa pode ler, entender e sintetizar megabytes de texto no seu cotidiano. Informações perdidas, e conseqüentemente oportunidades perdidas, estimularam pesquisas na exploração de várias estratégias para a administração da informação, a fim de estabelecer uma ordem na imensidão de textos. As estratégias mais comuns são recuperação de informações, filtragem de informações e outra relativamente nova, chamada de extração de informações. A extração de informações tem muitas aplicações potenciais. Por exemplo, a informação disponível em textos não-estruturados pode ser armazenada em bancos de dados tradicionais e usuários podem examiná-las através de consultas padrão. Para isso, há um complexo trabalho de gerenciamento, que é conseqüência da natureza não estruturada e da difícil análise dos dados. Os dados de entrada, que são os textos semi ou não-estruturados, são manipulados por um processo de extração configurado através de bases de conhecimento criadas pelo usuário do sistema. Esta dissertação tem como objetivo a definição de uma linguagem, com base em uma arquitetura de múltiplos níveis, para extrair satisfatoriamente as informações desejadas pelo usuário, presentes em bases de dados textuais. Também faz parte deste trabalho a implementação de um protótipo que utiliza a linguagem proposta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho é dedicado ao estudo e à aplicação da mineração de regras de associação a fim de descobrir padrões de navegação no ambiente Web. As regras de associação são padrões descritivos que representam a probabilidade de um conjunto de itens aparecer em uma transação visto que outro conjunto está presente. Dentre as possibilidades de aplicação da mineração de dados na Web, a mineração do seu uso consiste na extração de regras e padrões que descrevam o perfil dos visitantes aos sites e o seu comportamento navegacional. Neste contexto, alguns trabalhos já foram propostos, contudo diversos pontos foram deixados em aberto por seus autores. O objetivo principal deste trabalho é a apresentação de um modelo para a extração de regras de associação aplicado ao uso da Web. Este modelo, denominado Access Miner, caracteriza-se por enfocar as etapas do processo de descoberta do conhecimento desde a obtenção dos dados até a apresentação das regras obtidas ao analista. Características específicas do domínio foram consideradas, como a estrutura do site, para o pósprocessamento das regras mineradas a fim de selecionar as potencialmente mais interessantes e reduzir a quantidade de regras a serem apreciadas. O projeto possibilitou a implementação de uma ferramenta para a automação das diversas etapas do processo, sendo consideradas, na sua construção, as características de interatividade e iteratividade, necessárias para a descoberta e consolidação do conhecimento. Finalmente, alguns resultados foram obtidos a partir da aplicação desta ferramenta em dois casos, de forma que o modelo proposto pôde ser validado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existem vários trabalhos na área de extração de dados semi-estruturados, usando diferentes técnicas. As soluções de extração disponibilizadas pelos trabalhos existentes são direcionadas para atenderem a dados de certos domínios, considerando-se domínio o conjunto de elementos pertencentes à mesma área de interesse. Dada a complexidade e a grande quantidade dos dados semi-estruturados, principalmente dos disponíveis na World Wide Web (WWW), é que existem ainda muitos domínios a serem explorados. A maior parte das informações disponíveis em sites da Web está em páginas HTML. Muitas dessas páginas contêm dados de certos domínios (por exemplo, remédios). Em alguns casos, sites de organizações diferentes apresentam dados referentes a um mesmo domínio (por exemplo, farmácias diferentes oferecem remédios). O conhecimento de um determinado domínio, expresso em um modelo conceitual, serve para definir a estrutura de um documento. Nesta pesquisa, são consideradas exclusivamente tabelas de páginas HTML. A razão de se trabalhar somente com tabelas está baseada no fato de que parte dos dados de páginas HTML encontra-se nelas, e, como conseqüência, elimina-se o processamento dos outros dados, concentrando-se os esforços para que sejam processadas automaticamente. A pesquisa aborda o tratamento exclusivo de tabelas de páginas HTML na geração das regras de extração, na utilização das regras e do modelo conceitual para o reconhecimento de dados em páginas semelhantes. Para essa técnica, foi implementado o protótipo de uma ferramenta visual denominado Gerador de Regras de Extração e Modelo Conceitual (GREMO). GREMO foi desenvolvido em linguagem de programação visual Delphi 6.0. O processo de extração ocorre em quatro etapas: identificação e análise das tabelas de informações úteis em páginas HTML; identificação de conceitos para os elementos dos modelos conceituais; geração dos modelos conceituais correspondentes à página, ou utilização de modelo conceitual existente no repositório que satisfaça a página em questão; construção das regras de extração, extração dos dados da página, geração de arquivo XML correspondente aos dados extraídos e, finalmente, realimentação do repositório. A pesquisa apresenta as técnicas para geração e extração de dados semi-estruturados, as representações de domínio exclusivo de tabelas de páginas HTML por meio de modelo conceitual, as formas de geração e uso das regras de extração e de modelo conceitual.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis is proposes a method for a mobile robot to build a hybrid map of an indoor, semi-structured environment. The topological part of this map deals with spatial relationships among rooms and corridors. It is a topology-based map, where the edges of the graph are rooms or corridors, and each link between two distinct edges represents a door. The metric part of the map consists in a set of parameters. These parameters describe a geometric figure which adapts to the free space of the local environment. This figure is calculated by a set of points which sample the boundaries of the local free space. These points are obtained with range sensors and with knowledge about the robot s pose. A method based on generalized Hough transform is applied to this set of points in order to obtain the geomtric figure. The building of the hybrid map is an incremental procedure. It is accomplished while the robot explores the environment. Each room is associated with a metric local map and, consequently, with an edge of the topo-logical map. During the mapping procedure, the robot may use recent metric information of the environment to improve its global or relative pose

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work is to identify, to chart and to explain the evolution of the soil occupation and the envirionment vulnerability of the areas of Canto do Amaro and Alto da Pedra, in the city of Mossoró-RN, having as base analyzes it multiweather of images of orbital remote sensors, the accomplishment of extensive integrated works of field to a Geographic Information System (GIS). With the use of inserted techniques of it analyzes space inserted in a (GIS), and related with the interpretation and analyzes of products that comes from the Remote Sensoriamento (RS.), make possible resulted significant to reach the objectives of this works. Having as support for the management of the information, the data set gotten of the most varied sources and stored in digital environment, it comes to constitute the geographic data base of this research. The previous knowledge of the spectral behavior of the natural or artificial targets, and the use of algorithms of Processing of Digital images (DIP), it facilitates the interpretation task sufficiently and searchs of new information on the spectral level. Use as background these data, was generated a varied thematic cartography was: Maps of Geology, Geomorfológicals Units soils, Vegetation and Use and Occupation of the soil. The crossing in environment SIG, of the above-mentioned maps, generated the maps of Natural and Vulnerability envirionmental of the petroliferous fields of I Canto do Amaro and Alto da Pedra-RN, working in an ambient centered in the management of waters and solid residuos, as well as the analysis of the spatial data, making possible then a more complex analysis of the studied area

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)