912 resultados para Extinction (Biology)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine viral diarrhea virus (BVDV) is endemic worldwide. Together with classical swine fever and border disease viruses, it belongs to the genus Pestivirus of the family Flaviviridae. Most infections with BVDV take a transient, acute, course. Only rarely BVDV persists in its hosts. Due to the early time point of infection in utero, persistently infected (PI) animals are immunotolerant to the infecting non-cytopathic BVDV. In such animals the virus may mutate to a cytopathic biotype, causing lethal mucosal disease. In BVD-endemic regions, approximately 1% of the animals are PI. Removal of all PI animals leads to extinction of BVD. This approach to BVD eradication has been vindicated in Scandinavia. Following the same principles, regional and country-wide eradication programs are run in different parts of the world. These programs differ in the way PI animals are detected and in the role of vaccines. The Scandinavian two-step method of detecting PI animals is based on (i) the high level of seroprevalence in herds where PI animals are present and (ii) on testing all animals for virus in such herds. However, the high average herd seroprevalence in Switzerland made it impossible to define a reasonable threshold for virus testing. Therefore, all animals were directly tested for virus in the year 2008 and all newborn calves until the end of 2012, when the PI prevalence had dropped to 0.02%. Vaccination remains prohibited. Since 2013, surveillance for BVD is accomplished by serology. As a unique consequence of eradication, over 7500 viral strains are available to us for genetic studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary innovations, traits that give species access to previously unoccupied niches, may promote speciation and adaptive radiation. Here, we show that such innovations can also result in competitive inferiority and extinction. We present evidence that the modified pharyngeal jaws of cichlid fishes and several marine fish lineages, a classic example of evolutionary innovation, are not universally beneficial. A large-scale analysis of dietary evolution across marine fish lineages reveals that the innovation compromises access to energy-rich predator niches. We show that this competitive inferiority shaped the adaptive radiation of cichlids in Lake Tanganyika and played a pivotal and previously unrecognized role in the mass extinction of cichlid fishes in Lake Victoria after Nile perch invasion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the United States and several other countries., the development of population viability analyses (PVA) is a legal requirement of any species survival plan developed for threatened and endangered species. Despite the importance of pathogens in natural populations, little attention has been given to host-pathogen dynamics in PVA. To study the effect of infectious pathogens on extinction risk estimates generated from PVA, we review and synthesize the relevance of host-pathogen dynamics in analyses of extinction risk. We then develop a stochastic, density-dependent host-parasite model to investigate the effects of disease on the persistence of endangered populations. We show that this model converges on a Ricker model of density dependence under a suite of limiting assumptions, including. a high probability that epidemics will arrive and occur. Using this modeling framework, we then quantify: (1) dynamic differences between time series generated by disease and Ricker processes with the same parameters; (2) observed probabilities of quasi-extinction for populations exposed to disease or self-limitation; and (3) bias in probabilities of quasi-extinction estimated by density-independent PVAs when populations experience either form of density dependence. Our results suggest two generalities about the relationships among disease, PVA, and the management of endangered species. First, disease more strongly increases variability in host abundance and, thus, the probability of quasi-extinction, than does self-limitation. This result stems from the fact that the effects and the probability of occurrence of disease are both density dependent. Second, estimates of quasi-extinction are more often overly optimistic for populations experiencing disease than for those subject to self-limitation. Thus, although the results of density-independent PVAs may be relatively robust to some particular assumptions about density dependence, they are less robust when endangered populations are known to be susceptible to disease. If potential management actions involve manipulating pathogens, then it may be useful to. model disease explicitly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many populations have a negative impact on their habitat or upon other species in the environment if their numbers become too large. For this reason they are often subjected to some form of control. One common control regime is the reduction regime: when the population reaches a certain threshold it is controlled (for example culled) until it falls below a lower predefined level. The natural model for such a controlled population is a birth-death process with two phases, the phase determining which of two distinct sets of birth and death rates governs the process. We present formulae for the probability of extinction and the expected time to extinction, and discuss several applications. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitat loss, fragmentation, and degradation threaten the World’s ecosystems and species. These, and other threats, will likely be exacerbated by climate change. Due to a limited budget for conservation, we are forced to prioritize a few areas over others. These places are selected based on their uniqueness and vulnerability. One of the most famous examples is the biodiversity hotspots: areas where large quantities of endemic species meet alarming rates of habitat loss. Most of these places are in the tropics, where species have smaller ranges, diversity is higher, and ecosystems are most threatened.

Species distributions are useful to understand ecological theory and evaluate extinction risk. Small-ranged species, or those endemic to one place, are more vulnerable to extinction than widely distributed species. However, current range maps often overestimate the distribution of species, including areas that are not within the suitable elevation or habitat for a species. Consequently, assessment of extinction risk using these maps could underestimate vulnerability.

In order to be effective in our quest to conserve the World’s most important places we must: 1) Translate global and national priorities into practical local actions, 2) Find synergies between biodiversity conservation and human welfare, 3) Evaluate the different dimensions of threats, in order to design effective conservation measures and prepare for future threats, and 4) Improve the methods used to evaluate species’ extinction risk and prioritize areas for conservation. The purpose of this dissertation is to address these points in Colombia and other global biodiversity hotspots.

In Chapter 2, I identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities in Colombia. I used existing range maps of 171 bird species to identify priority conservation areas that would protect the greatest number of species at risk in Colombia (endemic and small-ranged species). The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. I then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, I made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes.

For Chapter 3, I identified areas where bird conservation met ecosystem service protection in the Central Andes of Colombia. Inspired by the November 11th (2011) landslide event near Manizales, and the current poor results of Colombia’s Article 111 of Law 99 of 1993 as a conservation measure in this country, I set out to prioritize conservation and restoration areas where landslide prevention would complement bird conservation in the Central Andes. This area is one of the most biodiverse places on Earth, but also one of the most threatened. Using the case of the Rio Blanco Reserve, near Manizales, I identified areas for conservation where endemic and small-range bird diversity was high, and where landslide risk was also high. I further prioritized restoration areas by overlapping these conservation priorities with a forest cover map. Restoring forests in bare areas of high landslide risk and important bird diversity yields benefits for both biodiversity and people. I developed a simple landslide susceptibility model using slope, forest cover, aspect, and stream proximity. Using publicly available bird range maps, refined by elevation, I mapped concentrations of endemic and small-range bird species. I identified 1.54 km2 of potential restoration areas in the Rio Blanco Reserve, and 886 km2 in the Central Andes region. By prioritizing these areas, I facilitate the application of Article 111 which requires local and regional governments to invest in land purchases for the conservation of watersheds.

Chapter 4 dealt with elevational ranges of montane birds and the impact of lowland deforestation on their ranges in the Western Andes of Colombia, an important biodiversity hotspot. Using point counts and mist-nets, I surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. I compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analyzing the effect of deforestation on 134 species, I tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.

In Chapter 5, I refine the ranges of 726 species from six biodiversity hotspots by suitable elevation and habitat. This set of 172 bird species for the Atlantic Forest, 138 for Central America, 100 for the Western Andes of Colombia, 57 for Madagascar, 102 for Sumatra, and 157 for Southeast Asia met the criteria for range size, endemism, threat, and forest use. Of these 586 species, the Red List deems 108 to be threatened: 15 critically endangered, 29 endangered, and 64 vulnerable. When ranges are refined by elevational limits and remaining forest cover, 10 of those critically endangered species have ranges < 100km2, but then so do 2 endangered species, seven vulnerable, and eight non-threatened ones. Similarly, 4 critically endangered species, 20 endangered, and 12 vulnerable species have refined ranges < 5000km2, but so do 66 non-threatened species. A striking 89% of these species I have classified in higher threat categories have <50% of their refined ranges inside protected areas. I find that for 43% of the species I assessed, refined range sizes fall within thresholds that typically have higher threat categories than their current assignments. I recommend these species for closer inspection by those who assess risk. These assessments are not only important on a species-by-species basis, but by combining distributions of threatened species, I create maps of conservation priorities. They differ significantly from those created from unrefined ranges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Atlantic rainforest species Ocotea catharinensis, Ocotea odorifera, and Ocotea porosa have been extensively harvested in the past for timber and oil extraction and are currently listed as threatened due to overexploitation. To investigate the genetic diversity and population structure of these species, we developed 8 polymorphic microsatellite markers for O. odorifera from an enriched microsatellite library by using 2 dinucleotide repeats. The microsatellite markers were tested for cross-amplification in O. catharinensis and O. porosa. The average number of alleles per locus was 10.2, considering all loci over 2 populations of O. odorifera. Observed and expected heterozygosities for O. odorifera ranged from 0.39 to 0.93 and 0.41 to 0.92 across populations, respectively. Cross-amplification of all loci was successfully observed in O. catharinensis and O. porosa except 1 locus that was found to lack polymorphism in O. porosa. Combined probabilities of identity in the studied Ocotea species were very low ranging from 1.0 x 10-24 to 7.7 x 10-24. The probability of exclusion over all loci estimated for O. odorifera indicated a 99.9% chance of correctly excluding a random nonparent individual. The microsatellite markers described in this study have high information content and will be useful for further investigations on genetic diversity within these species and for subsequent conservation purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This survey aimed at describing the interactions of floral visitors and Davilla kunthii A. St.-Hil. as well as characteristics of its reproductive biology in Itacoatiara, state of Amazonas, Brazil. Tests of the breeding system were performed. The guild of visitors was described according to richness, abundance, relative frequency and constancy. The breeding system tests indicated that D. kunthii is self-compatible. The pollination system was characterized as generalist, with 39 visitor species, from three different orders. Bees were the main group of pollinators, thus some behavioural aspects were described. Th e period of highest foraging activity was between 7 and 10 am. Some species presented agonistic and monopolistic behaviour. Given the behaviour and destructive potential, the Curculionidae seem to have a greater impact as seed predators than pollinators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Though introduced recently, complex networks research has grown steadily because of its potential to represent, characterize and model a wide range of intricate natural systems and phenomena. Because of the intrinsic complexity and systemic organization of life, complex networks provide a specially promising framework for systems biology investigation. The current article is an up-to-date review of the major developments related to the application of complex networks in biology, with special attention focused on the more recent literature. The main concepts and models of complex networks are presented and illustrated in an accessible fashion. Three main types of networks are covered: transcriptional regulatory networks, protein-protein interaction networks and metabolic networks. The key role of complex networks for systems biology is extensively illustrated by several of the papers reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Argentine hake, Merluccius hubbsi, a demersal-pelagic species found from Rio de Janeiro, Brazil to the Tierra del Fuego, Argentina, has become an important target of the Brazilian bottom-trawler fleet since 2001. Earlier studies focusing on the species have suggested that more than one stock might occur off the Brazilian coast, in accordance with environmental features. In order to evaluate this hypothesis, fish were collected from four different areas in the Brazilian waters in which the hake is distributed, during the summers and winters of 1996-2001 and 2004, the females being used to analyze and compare spatial-temporal variations in ovarian maturation. Gonad indexes were also applied for the same purpose. Results indicate a north-south spawning gradient occurring as from summer at around 21°S to winter near 34°S, leading to the identification of two distinct stocks: one located between 21°S and 29°S (Southeastern stock) and the other between 29°S and 34°S (Southern stock), this latter shared with Uruguay and Argentina. Brazilian stocks present clear signs of overexploitation, the situation calling for an urgent solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the 1992-1993 El Niño events on the reproductive behavior of the Scomber japonicus peruanus (Chub mackerel) was studied from samples collected monthly, along the Peruvian coast (3º23'S-14º00'S), from January 1990 to December 1993. The monthly variation of the gonadosomatic index and the frequency of the periods of gonad maturation evidenced that the spawning of the species occurred all year long, being more intense in summer. The values of the gonadosomatic index were higher during the occurrence of the 1992-1993 El Niño, while the body weight and gonad weight decreased. Regarding the condition factor, its values decreased in females over 35 cm in fork length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual, and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i) competition is between individuals; ii) there is some degree of locality, so quite often competition will be between parents and their progeny; iii) optimal conditions are not stationary, and mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces can sometimes win over group selection ones, it is not exactly the individual that is selected but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Ticks secrete a cement cone composed of many salivary proteins, some of which are rich in the amino acid glycine in order to attach to their hosts' skin. Glycine-rich proteins (GRPs) are a large family of heterogeneous proteins that have different functions and features; noteworthy are their adhesive and tensile characteristics. These properties may be essential for successful attachment of the metastriate ticks to the host and the prolonged feeding necessary for engorgement. In this work, we analyzed Expressed Sequence Tags (ESTs) similar to GRPs from cDNA libraries constructed from salivary glands of adult female ticks representing three hard, metastriate species in order to verify if their expression correlated with biological differences such as the numbers of hosts ticks feed on during their parasitic life cycle, whether one (monoxenous parasite) or two or more (heteroxenous parasite), and the anatomy of their mouthparts, whether short (Brevirostrata) or long (Longirostrata). These ticks were the monoxenous Brevirostrata tick, Rhipicephalus (Boophilus) microplus, a heteroxenous Brevirostrata tick, Rhipicephalus sanguineus, and a heteroxenous Longirostrata tick, Amblyomma cajennense. To further investigate this relationship, we conducted phylogenetic analyses using sequences of GRPs from these ticks as well as from other species of Brevirostrata and Longirostrata ticks. Results: cDNA libraries from salivary glands of the monoxenous tick, R. microplus, contained more contigs of glycine-rich proteins than the two representatives of heteroxenous ticks, R. sanguineus and A. cajennense (33 versus, respectively, 16 and 11). Transcripts of ESTs encoding GRPs were significantly more numerous in the salivary glands of the two Brevirostrata species when compared to the number of transcripts in the Longirostrata tick. The salivary gland libraries from Brevirostrata ticks contained numerous contigs significantly similar to silks of true spiders (17 and 8 in, respectively, R. microplus and R. sanguineus), whereas the Longirostrata tick contained only 4 contigs. The phylogenetic analyses of GRPs from various species of ticks showed that distinct clades encoding proteins with different biochemical properties are represented among species according to their biology. Conclusions: We found that different species of ticks rely on different types and amounts of GRPs in order to attach and feed on their hosts. Metastriate ticks with short mouthparts express more transcripts of GRPs than a tick with long mouthparts and the tick that feeds on a single host during its life cycle contain a greater variety of these proteins than ticks that feed on several hosts.