461 resultados para Exponents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the entanglement spectrum near criticality in finite quantum spin chains. Using finite size scaling we show that when approaching a quantum phase transition, the Schmidt gap, i.e., the difference between the two largest eigenvalues of the reduced density matrix ?1, ?2, signals the critical point and scales with universal critical exponents related to the relevant operators of the corresponding perturbed conformal field theory describing the critical point. Such scaling behavior allows us to identify explicitly the Schmidt gap as a local order parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We establish numerically the validity of Huberman-Rudnick scaling relation for Lyapunov exponents during the period doubling route to chaos in one dimensional maps. We extend our studies to the context of a combination map. where the scaling index is found to be different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the bifurcation structure of the logistic map with a time dependant control parameter. By introducing a specific nonlinear variation for the parameter, we show that the bifurcation structure is modified qualitatively as well as quantitatively from the first bifurcation onwards. We have also computed the two Lyapunov exponents of the system and find that the modulated logistic map is less chaotic compared to the logistic map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study and compare the information loss of a large class of Gaussian bipartite systems. It includes the usual Caldeira-Leggett-type model as well as Anosov models ( parametric oscillators, the inverted oscillator environment, etc), which exhibit instability, one of the most important characteristics of chaotic systems. We establish a rigorous connection between the quantum Lyapunov exponents and coherence loss, and show that in the case of unstable environments coherence loss is completely determined by the upper quantum Lyapunov exponent, a behavior which is more universal than that of the Caldeira-Leggett-type model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new universal empirical function that depends on a single critical exponent (acceleration exponent) is proposed to describe the scaling behavior in a dissipative kicked rotator. The scaling formalism is used to describe two regimes of dissipation: (i) strong dissipation and (ii) weak dissipation. For case (i) the model exhibits a route to chaos known as period doubling and the Feigenbaum constant along the bifurcations is obtained. When weak dissipation is considered the average action as well as its standard deviation are described using scaling arguments with critical exponents. The universal empirical function describes remarkably well a phase transition from limited to unlimited growth of the average action. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The literature indicated that the fractal analysis of heart rate variability (HRV) is related to the chaos theory. However, it is not clear if the both short and long-term fractal scaling exponents of HRV are reliable for short period analysis in women. We evaluated the association of the fractal exponents of HRV with the time and frequency domain and geometric indices of HRV. We evaluated 65 healthy women between 18 and 30 years old. HRV was analyzed with a minimal number of 256 RR intervals in the time (SDNN, RMSSD, NN50 and pNN50) and frequency (LF, HF and LF/HF ratio) domains, the geometric index were also analyzed (triangular indexRRtri, triangular interpolation of RR intervals-TINN and Poincaré plot-SD1, SD2 and SD1/SD2) as well as short and long-term fractal exponents (alpha-1 and alpha-2) of the detrended fluctuation analysis (DFA). No significant correlation was observed for alpha-2 exponent with all indices. There was significant correlation of the alpha-1 exponent with RMSSD, pNN50, SDNN/RMSSD, LF (nu), HF (nu and ms2 ), LF/HF ratio, SD1 and SD1/SD2 ratio. Our data does not indicate the alpha-2 exponent to be used for 256 RR intervals and we support the alpha-1 exponent to be used for HRV analysis in this condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the method of Monte Carlo evolution in the coupling constant space of Ferrenberg and Swendsen to evaluate the nonuniversal exponent η* associated to a linear defect in a 2d Ising model. © 1989.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a theoretical method for a direct evaluation of the average and reliability error exponents in low-density parity-check error-correcting codes using methods of statistical physics. Results for the binary symmetric channel are presented for codes of both finite and infinite connectivity.