990 resultados para Experimental physics
Resumo:
This Habilitationsschrift (Habilitation thesis) is focused on my research activities on medical applications of particle physics and was written in 2013 to obtain the Venia Docendi (Habilitation) in experimental physics at the University of Bern. It is based on selected publications, which represented at that time my major scientific contributions as an experimental physicist to the field of particle accelerators and detectors applied to medical diagnostics and therapy. The thesis is structured in two parts. In Part I, Chapter 1 presents an introduction to accelerators and detectors applied to medicine, with particular focus on cancer hadrontherapy and on the production of radioactive isotopes. In Chapter 2, my publications on medical particle accelerators are introduced and put into their perspective. In particular, high frequency linear accelerators for hadrontherapy are discussed together with the new Bern cyclotron laboratory. Chapter 3 is dedicated to particle detectors with particular emphasis on three instruments I contributed to propose and develop: segmented ionization chambers for hadrontherapy, a proton radiography apparatus with nuclear emulsion films, and a beam monitor detector for ion beams based on doped silica fibres. Selected research and review papers are contained in Part II. For copyright reasons, they are only listed and not reprinted in this on-line version. They are available on the websites of the journals.
Resumo:
The Tokai-to-Kamioka (T2K) neutrino experiment measures neutrino oscillations by using an almost pure muon neutrino beam produced at the J-PARC accelerator facility. The T2K muon monitor was installed to measure the direction and stability of the muon beam which is produced together with the muon neutrino beam. The systematic error in the muon beam direction measurement was estimated, using data and MC simulation, to be 0.28 mrad. During beam operation, the proton beam has been controlled using measurements from the muon monitor and the direction of the neutrino beam has been tuned to within 0.3 mrad with respect to the designed beam-axis. In order to understand the muon beam properties, measurement of the absolute muon yield at the muon monitor was conducted with an emulsion detector. The number of muon tracks was measured to be (4.06 ± 0.05) × 10⁴ cm⁻² normalized with 4 × 10¹¹protons on target with 250 kA horn operation. The result is in agreement with the prediction which is corrected based on hadron production data.
Resumo:
EURATOM/CIEMAT and Technical University of Madrid (UPM) have been involved in the development of a FPSC [1] (Fast Plant System Control) prototype for ITER, based on PXIe (PCI eXtensions for Instrumentation). One of the main focuses of this project has been data acquisition and all the related issues, including scientific data archiving. Additionally, a new data archiving solution has been developed to demonstrate the obtainable performances and possible bottlenecks of scientific data archiving in Fast Plant System Control. The presented system implements a fault tolerant architecture over a GEthernet network where FPSC data are reliably archived on remote, while remaining accessible to be redistributed, within the duration of a pulse. The storing service is supported by a clustering solution to guaranty scalability, so that FPSC management and configuration may be simplified, and a unique view of all archived data provided. All the involved components have been integrated under EPICS [2] (Experimental Physics and Industrial Control System), implementing in each case the necessary extensions, state machines and configuration process variables. The prototyped solution is based on the NetCDF-4 [3] and [4] (Network Common Data Format) file format in order to incorporate important features, such as scientific data models support, huge size files management, platform independent codification, or single-writer/multiple-readers concurrency. In this contribution, a complete description of the above mentioned solution is presented, together with the most relevant results of the tests performed, while focusing in the benefits and limitations of the applied technologies.
Resumo:
EPICS (Experimental Physics and Industrial Control System) lies in a set of software tools and applications which provide a software infrastructure for building distributed data acquisition and control systems. Currently there is an increase in use of such systems in large Physics experiments like ITER, ESS, and FREIA. In these experiments, advanced data acquisition systems using FPGA-based technology like FlexRIO are more frequently been used. The particular case of ITER (International Thermonuclear Experimental Reactor), the instrumentation and control system is supported by CCS (CODAC Core System), based on RHEL (Red Hat Enterprise Linux) operating system, and by the plant design specifications in which every CCS element is defined either hardware, firmware or software. In this degree final project the methodology proposed in Implementation of Intelligent Data Acquisition Systems for Fusion Experiments using EPICS and FlexRIO Technology Sanz et al. [1] is used. The final objective is to provide a document describing the fulfilled process and the source code of the data acquisition system accomplished. The use of the proposed methodology leads to have two diferent stages. The first one consists of the hardware modelling with graphic design tools like LabVIEWFPGA which later will be implemented in the FlexRIO device. In the next stage the design cycle is completed creating an EPICS controller that manages the device using a generic device support layer named NDS (Nominal Device Support). This layer integrates the data acquisition system developed into CCS (Control, data access and communication Core System) as an EPICS interface to the system. The use of FlexRIO technology drives the use of LabVIEW and LabVIEW FPGA respectively. RESUMEN. EPICS (Experimental Physics and Industrial Control System) es un conjunto de herramientas software utilizadas para el desarrollo e implementación de sistemas de adquisición de datos y control distribuidos. Cada vez es más utilizado para entornos de experimentación física a gran escala como ITER, ESS y FREIA entre otros. En estos experimentos se están empezando a utilizar sistemas de adquisición de datos avanzados que usan tecnología basada en FPGA como FlexRIO. En el caso particular de ITER, el sistema de instrumentación y control adoptado se basa en el uso de la herramienta CCS (CODAC Core System) basado en el sistema operativo RHEL (Red Hat) y en las especificaciones del diseño del sistema de planta, en la cual define todos los elementos integrantes del CCS, tanto software como firmware y hardware. En este proyecto utiliza la metodología propuesta para la implementación de sistemas de adquisición de datos inteligente basada en EPICS y FlexRIO. Se desea generar una serie de ejemplos que cubran dicho ciclo de diseño completo y que serían propuestos como casos de uso de dichas tecnologías. Se proporcionará un documento en el que se describa el trabajo realizado así como el código fuente del sistema de adquisición. La metodología adoptada consta de dos etapas diferenciadas. En la primera de ellas se modela el hardware y se sintetiza en el dispositivo FlexRIO utilizando LabVIEW FPGA. Posteriormente se completa el ciclo de diseño creando un controlador EPICS que maneja cada dispositivo creado utilizando una capa software genérica de manejo de dispositivos que se denomina NDS (Nominal Device Support). Esta capa integra la solución en CCS realizando la interfaz con la capa EPICS del sistema. El uso de la tecnología FlexRIO conlleva el uso del lenguaje de programación y descripción hardware LabVIEW y LabVIEW FPGA respectivamente.
Resumo:
Teachers often have difficulty implementing inquiry-based activities, leading to the arousal of negative emotions. In this multicase study of beginning physics teachers in Australia, we were interested in the extent to which their expectations were realized and how their classroom experiences while implementing extended experimental investigations (EEIs) produced emotional states that mediated their teaching practices. Against rhetoric of fear expressed by their senior colleagues, three of the four teachers were surprised by the positive outcomes from their supervision of EEIs for the first time. Two of these teachers experienced high intensity positive emotions in response to their students’ success. When student actions / outcomes did not meet their teachers’ expectations, frustration, anger, and disappointment were experienced by the teachers, as predicted by a sociological theory of human emotions (Turner, 2007). Over the course of the EEI projects, the teachers’ practices changed along with their emotional states and their students’ achievements. We account for similarities and differences in the teachers’ emotional experiences in terms of context, prior experience, and expectations. The findings from this study provide insights into effective supervision practices that can be used to inform new and experienced teachers alike.
Resumo:
Time-of-flight measurements of energetic He atoms, field ionization of cryogenic liquid helium clusters, and time-of-flight and REMPI spectroscopy of radical salt clusters were investigated experimentally. The excited He atoms were generated in a corona discharge. Two strong neutral peaks were observed, accompanied by a prompt photon peak and a charged peak. All peaks were correlated with the pulsing of the discharge. The neutral hyperthermal and metastable atoms were formed by different mechanisms at different stages of the corona discharge. Positively charged helium droplets were produced by ionization of liquid helium in an electrostatic spraying experiment. The fluid emerging from a thin glass capillary was ionized by a high voltage applied to a needle inside the capillary. Fine droplets (less than 10 µm in diameter) were produced in showers with currents as high as 0.4 µA at 2-4 kV. The high currents resulting from field ionization in helium and the low surface tension of He I, led to charge densities that greatly exceeded the Rayleigh limit, thus resulting in coulombic explosion of the liquid. In contrast, liquid nitrogen formed a well-defined Taylor cone with droplets having diameters comparable to the jet (≈100 µm) at lower currents (10 nA) and higher voltages (8 kV). The metal-halide clusters of calcium and chlorine were generated by laser ablation of calcium metal in a Ar/CCl4 expansion. A visible spectrum of the Ca2Cl3 cluster was observed from 651 to 630 nm by 1 +1' REMPI. The spectra were composed of a strong origin band at 15 350.8 cm-1 and several weak vibronic bands. Density functional calculations predicted three minimum energy isomers. The spectrum was assigned to the 2B2 ← X 2A1 transition of a planar C2V structure having a ring of two Cl and two Ca atoms and a terminal Cl atom. The ring isomer of Ca2Cl3 has the unpaired electron localized on one Ca2+ ion to form a Ca+ chromophore. A second electronic band of Ca2Cl3 was observed at 720 nm. The band is sharply different from the 650 nm band and likely due to a different isomer.
Resumo:
This paper describes a fundamental experimental study of the flow structure around a single three-dimensional (3D) transonic shock control bump (SCB) mounted on a flat surface in a wind tunnel. Tests have been carried out with a Mach 1.3 normal shock wave located at a number of streamwise positions relative to the SCB. Details of the flow have been studied using the experimental techniques of schlieren photography, surface oil flow visualization, pressure sensitive paint, and laser Doppler anemometry. The results of the work build on the findings of previous researchers and shed new light on the flow physics of 3D SCBs. It is found that spanwise pressure gradients across the SCB ramp and the shape of the SCB sides affect the magnitude and uniformity of flow turning generated by the bump, which can impact on the spanwise propagation of the quasi-two-dimensional (2D) shock structure produced by a 3DSCB. At the bump crest, vortices can form if the pressure on the crest is significantly lower than at either side of the bump. The trajectories of these vortices, which are relatively weak, are strongly influenced by any spanwise pressure gradients across the bump tail. Asignificant difference between 2D and 3D SCBs highlighted by the study is the impact of spanwise pressure gradients on 3D SCB performance. The magnitude of these spanwise pressure gradients is determined largely by SCB geometry and shock position. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
This is a research paper in which we discuss “active learning” in the light of Cultural-Historical Activity Theory (CHAT), a powerful framework to analyze human activity, including teaching and learning process and the relations between education and wider human dimensions as politics, development, emancipation etc. This framework has its origin in Vygotsky's works in the psychology, supported by a Marxist perspective, but nowadays is a interdisciplinary field encompassing History, Anthropology, Psychology, Education for example.
Resumo:
Includes bibliographies.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references and index.
Resumo:
We report numerical analysis and experimental observation of strongly localized plasmons guided by triangular metal wedges and pay special attention to the effect of smooth (nonzero radius) tips. Dispersion, dissipation, and field structure of such wedge plasmons are analyzed using the compact two-dimensional finite-difference time-domain algorithm. Experimental observation is conducted by the end-fire excitation and near-field scanning optical microscope detection of the predicted plasmons on 40°silver nanowedges with the wedge tip radii of 20, 85, and 125 nm that were fabricated by the focused-ion beam method. The effect of smoothing wedge tips is shown to be similar to that of increasing wedge angle. Increasing wedge angle or wedge tip radius results in increasing propagation distance at the same time as decreasing field localization (decreasing wave number). Quantitative differences between the theoretical and experimental propagation distances are suggested to be due to a contribution of scattered bulk and surface waves near the excitation region as well as the addition of losses due to surface roughness. The theoretical and measured propagation distances are several plasmon wavelengths and are useful for a range of nano-optical applications
Resumo:
An analytical solution is presented in this paper for the vibration response of a ribbed plate clamped on all its boundary edges by employing a travelling wave solution. A clamped ribbed plate test rig is also assembled in this study for the experimental investigation of the ribbed plate response and to provide verification results to the analytical solution. The dynamic characteristics and mode shapes of the ribbed plate are measured and compared to those obtained from the analytical solution and from finite element analysis (FEA). General good agreements are found between the results. Discrepancies between the computational and experimental results at low and high frequencies are also discussed. Explanations are offered in the study to disclose the mechanism causing the discrepancies. The dependency of the dynamic response of the ribbed plate on the distance between the excitation force and the rib is also investigated experimentally. It confirms the findings disclosed in a previous analytical study [T. R. Lin and J. Pan, A closed form solution for the dynamic response of finite ribbed plates. Journal of the Acoustical Society of America 119 (2006) 917-925] that the vibration response of a clamped ribbed plate due to a point force excitation is controlled by the plate stiffness when the source is more than a quarter plate bending wavelength away from the rib and from the plate boundary. The response is largely affected by the rib stiffness when the source location is less than a quarter bending wavelength away from the rib.
Resumo:
Study Design. A sheep study designed to compare the accuracy of static radiographs, dynamic radiographs, and computed tomographic (CT) scans for the assessment of thoracolumbar facet joint fusion as determined by micro-CT scanning. Objective. To determine the accuracy and reliability of conventional imaging techniques in identifying the status of thoracolumbar (T13-L1) facet joint fusion in a sheep model. Summary of Background Data. Plain radiographs are commonly used to determine the integrity of surgical arthrodesis of the thoracolumbar spine. Many previous studies of fusion success have relied solely on postoperative assessment of plain radiographs, a technique lacking sensitivity for pseudarthrosis. CT may be a more reliable technique, but is less well characterized. Methods. Eleven adult sheep were randomized to either attempted arthrodesis using autogenous bone graft and internal fixation (n = 3) or intentional pseudarthrosis (IP) using oxidized cellulose and internal fixation (n = 8). After 6 months, facet joint fusion was assessed by independent observers, using (1) plain static radiography alone, (2) additional dynamic radiographs, and (3) additional reconstructed spiral CT imaging. These assessments were correlated with high-resolution micro-CT imaging to predict the utility of the conventional imaging techniques in the estimation of fusion success. Results. The capacity of plain radiography alone to correctly predict fusion or pseudarthrosis was 43% and was not improved using plain radiography and dynamic radiography with also a 43% accuracy. Adding assessment by reformatted CT imaging to the plain radiography techniques increased the capacity to predict fusion outcome to 86% correctly. The sensitivity, specificity, and accuracy of static radiography were 0.33, 0.55, and 0.43, respectively, those of dynamic radiography were 0.46, 0.40, and 0.43, respectively, and those of radiography plus CT were 0.88, 0.85, and 0.86, respectively. Conclusion. CT-based evaluation correlated most closely with high-resolution micro-CT imaging. Neither plain static nor dynamic radiographs were able to predict fusion outcome accurately. © 2012 Lippincott Williams & Wilkins.