909 resultados para Expansion mandibulaire (Mandibular expansion)
Resumo:
Language Modeling (LM) has been successfully applied to Information Retrieval (IR). However, most of the existing LM approaches only rely on term occurrences in documents, queries and document collections. In traditional unigram based models, terms (or words) are usually considered to be independent. In some recent studies, dependence models have been proposed to incorporate term relationships into LM, so that links can be created between words in the same sentence, and term relationships (e.g. synonymy) can be used to expand the document model. In this study, we further extend this family of dependence models in the following two ways: (1) Term relationships are used to expand query model instead of document model, so that query expansion process can be naturally implemented; (2) We exploit more sophisticated inferential relationships extracted with Information Flow (IF). Information flow relationships are not simply pairwise term relationships as those used in previous studies, but are between a set of terms and another term. They allow for context-dependent query expansion. Our experiments conducted on TREC collections show that we can obtain large and significant improvements with our approach. This study shows that LM is an appropriate framework to implement effective query expansion.
Resumo:
In information retrieval, a user's query is often not a complete representation of their real information need. The user's information need is a cognitive construction, however the use of cognitive models to perform query expansion have had little study. In this paper, we present a cognitively motivated query expansion technique that uses semantic features for use in ad hoc retrieval. This model is evaluated against a state-of-the-art query expansion technique. The results show our approach provides significant improvements in retrieval effectiveness for the TREC data sets tested.
Resumo:
This study contributes to the literature on international retailing by addressing a gap in the literature as to how retailers from emerging markets expand internationally. This historical case study analyzes the growth and internationalization process of Chilean retailer Falabella, one of the largest in Latin America and has been able to compete with multinationals from developed countries. The research is based upon primary and secondary data sources including 33 oral interviews with company managers and family executives, as well as industry data, corporate reports, and trade journals. Drawing on institutional theory, the findings show that by belonging to a family conglomerate, engaging in networks and partnerships, organizational learning, and having an experienced management team helped Falabella gain legitimacy in all international markets.
Resumo:
Haematopoiesis is the process by which a hierarchy of mature and progenitor blood cells are formed. These cell populations are all derived from multipotent haematopoietic stem cells (HSC), which reside in the bone marrow ‘niche’ of adult humans. Over the lifetime of a healthy individual, this HSC population replenishes between 1010-1011 blood cells on a daily basis. Dysregulation of this system can lead to a number of haematopoietic diseases, including aplastic anaemias and leukaemias, which result in, or require for disease resolution, bone marrow cell depletion. In 1956, E. Donnall Thomas demonstrated that haematopoiesis could be restored by transplanting bone marrow-derived cells from one man into his identical twin brother, who was suffering from advanced leukaemia. His success drew significant interest in academic research and medicine communities, and 12 years later, the first successful allogeneic transplant was performed. To this day, HSCs remain the most studied and characterised stem cell population. In fact, HSCs are the only stem cell population routinely utilised in the clinic. As such, HSCs function as a model system both for the biological investigation of stem cells, as well as for their clinical application. Herein, we briefly review HSC transplantation, strategies for the ex vivo cultivation of HSCs, recent clinical outcomes, and their impact on the future direction of HSC transplantation therapy.
Resumo:
In this study, we explore the population genetics of the Russian wheat aphid (RWA) (Diuraphis noxia), one of the world’s most invasive agricultural pests, in north-western China. We have analysed the data of 10 microsatellite loci and mitochondrial sequences from 27 populations sampled over 2 years in China. The results confirm that the RWAs are holocyclic in China with high genetic diversity indicating widespread sexual reproduction. Distinct differences in microsatellite genetic diversity and distribution revealed clear geographic isolation between RWA populations in northern and southern Xinjiang, China, with gene flow interrupted across extensive desert regions. Despite frequent grain transportation from north to south in this region, little evidence for RWA translocation as a result of human agricultural activities was found. Consequently, frequent gene flow among northern populations most likely resulted from natural dispersal, potentially facilitated by wind currents. We also found evidence for the longterm existence and expansion of RWAs in China, despite local opinion that it is an exotic species only present in China since 1975. Our estimated date of RWA expansion throughout China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. We conclude that western China represents the limit of the far eastern native range of this species. This study is the most comprehensive molecular genetic investigation of the RWA in its native range undertaken to date and provides valuable insights into the history of the association of this aphid with domesticated cereals and wild grasses.
Resumo:
This paper develops a framework for classifying term dependencies in query expansion with respect to the role terms play in structural linguistic associations. The framework is used to classify and compare the query expansion terms produced by the unigram and positional relevance models. As the unigram relevance model does not explicitly model term dependencies in its estimation process it is often thought to ignore dependencies that exist between words in natural language. The framework presented in this paper is underpinned by two types of linguistic association, namely syntagmatic and paradigmatic associations. It was found that syntagmatic associations were a more prevalent form of linguistic association used in query expansion. Paradoxically, it was the unigram model that exhibited this association more than the positional relevance model. This surprising finding has two potential implications for information retrieval models: (1) if linguistic associations underpin query expansion, then a probabilistic term dependence assumption based on position is inadequate for capturing them; (2) the unigram relevance model captures more term dependency information than its underlying theoretical model suggests, so its normative position as a baseline that ignores term dependencies should perhaps be reviewed.
Resumo:
With the advent of large-scale wind farms and their integration into electrical grids, more uncertainties, constraints and objectives must be considered in power system development. It is therefore necessary to introduce risk-control strategies into the planning of transmission systems connected with wind power generators. This paper presents a probability-based multi-objective model equipped with three risk-control strategies. The model is developed to evaluate and enhance the ability of the transmission system to protect against overload risks when wind power is integrated into the power system. The model involves: (i) defining the uncertainties associated with wind power generators with probability measures and calculating the probabilistic power flow with the combined use of cumulants and Gram-Charlier series; (ii) developing three risk-control strategies by specifying the smallest acceptable non-overload probability for each branch and the whole system, and specifying the non-overload margin for all branches in the whole system; (iii) formulating an overload risk index based on the non-overload probability and the non-overload margin defined; and (iv) developing a multi-objective transmission system expansion planning (TSEP) model with the objective functions composed of transmission investment and the overload risk index. The presented work represents a superior risk-control model for TSEP in terms of security, reliability and economy. The transmission expansion planning model with the three risk-control strategies demonstrates its feasibility in the case study using two typical power systems
Resumo:
Mesenchymal stem cells (MSC) are emerging as a leading cellular therapy for a number of diseases. However, for such treatments to become available as a routine therapeutic option, efficient and cost-effective means for industrial manufacture of MSC are required. At present, clinical grade MSC are manufactured through a process of manual cell culture in specialized cGMP facilities. This process is open, extremely labor intensive, costly, and impractical for anything more than a small number of patients. While it has been shown that MSC can be cultivated in stirred bioreactor systems using microcarriers, providing a route to process scale-up, the degree of numerical expansion achieved has generally been limited. Furthermore, little attention has been given to the issue of primary cell isolation from complex tissues such as placenta. In this article we describe the initial development of a closed process for bulk isolation of MSC from human placenta, and subsequent cultivation on microcarriers in scalable single-use bioreactor systems. Based on our initial data, we estimate that a single placenta may be sufficient to produce over 7,000 doses of therapeutic MSC using a large-scale process.
Resumo:
An energy storage system (ESS) can provide ancillary services such as frequency regulation and reserves, as well as smooth the fluctuations of wind power outputs, and hence improve the security and economics of the power system concerned. The combined operation of a wind farm and an ESS has become a widely accepted operating mode. Hence, it appears necessary to consider this operating mode in transmission system expansion planning, and this is an issue to be systematically addressed in this work. Firstly, the relationship between the cost of the NaS based ESS and its discharging cycle life is analyzed. A strategy for the combined operation of a wind farm and an ESS is next presented, so as to have a good compromise between the operating cost of the ESS and the smoothing effect of the fluctuation of wind power outputs. Then, a transmission system expansion planning model is developed with the sum of the transmission investment costs, the investment and operating costs of ESSs and the punishment cost of lost wind energy as the objective function to be minimized. An improved particle swarm optimization algorithm is employed to solve the developed planning model. Finally, the essential features of the developed model and adopted algorithm are demonstrated by 18-bus and 46-bus test systems.
Resumo:
In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.
Resumo:
Purpose – The purpose of this paper is to provide a new type of entry mode decision-making model for construction enterprises involved in international business. Design/methodology/approach – A hybrid method combining analytic hierarchy process (AHP) with preference ranking organization method for enrichment evaluations (PROMETHEE) is used to aid entry mode decisions. The AHP is used to decompose the entry mode problem into several dimensions and determine the weight of each criterion. In addition, PROMETHEE method is used to rank candidate entry modes and carry out sensitivity analyses. Findings – The proposed decision-making method is demonstrated to be a suitable approach to resolve the entry mode selection decision problem. Practical implications – The research provides practitioners with a more systematic decision framework and a more precise decision method. Originality/value – The paper sheds light on the further development of entry strategies for international construction markets. It not only introduces a new decision-making model for entry mode decision making, but also provides a conceptual framework with five determinants for a construction company entry mode selection based on the unique properties of the construction industry.
Resumo:
A user’s query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques ignore information about the dependencies that exist between words in natural language. However, more recent approaches have demonstrated that by explicitly modeling associations between terms significant improvements in retrieval effectiveness can be achieved over those that ignore these dependencies. State-of-the-art dependency-based approaches have been shown to primarily model syntagmatic associations. Syntagmatic associations infer a likelihood that two terms co-occur more often than by chance. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process will improve retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine.
Resumo:
Many successful query expansion techniques ignore information about the term dependencies that exist within natural language. However, researchers have recently demonstrated that consistent and significant improvements in retrieval effectiveness can be achieved by explicitly modelling term dependencies within the query expansion process. This has created an increased interest in dependency-based models. State-of-the-art dependency-based approaches primarily model term associations known within structural linguistics as syntagmatic associations, which are formed when terms co-occur together more often than by chance. However, structural linguistics proposes that the meaning of a word is also dependent on its paradigmatic associations, which are formed between words that can substitute for each other without effecting the acceptability of a sentence. Given the reliance on word meanings when a user formulates their query, our approach takes the novel step of modelling both syntagmatic and paradigmatic associations within the query expansion process based on the (pseudo) relevant documents returned in web search. The results demonstrate that this approach can provide significant improvements in web re- trieval effectiveness when compared to a strong benchmark retrieval system.