977 resultados para Exact solution
Resumo:
The three-dimensional three-body problem with non-equal masses interacting through pairwise harmonic forces of non-equal strengths is analysed. It is shown that the Jacobi coordinates per se do not decouple this problem but lead to the problem of two coupled three-dimensional harmonic oscillators which becomes exactly soluble through the use of an additional coordinate set.
Resumo:
A new derivation of Euler's Elastica with transverse shear effects included is presented. The elastic potential energy of bending and transverse shear is set up. The work of the axial compression force is determined. The equation of equilibrium is derived using the variation of the total potential. Using substitution of variables an exact solution is derived. The equation is transcendental and does not have a closed form solution. It is evaluated in a dimensionless form by using a numerical procedure. Finally, numerical examples of laminates made of composite material (fiber reinforced) and sandwich panels are provided.
Resumo:
A charged particle is considered in a complex external electromagnetic field. The field is a superposition of an Aharonov-Bohm field and some additional field. Here we describe all additional fields known up to the present time that allow exact solution of the Schrodinger equation in a complex field.
Resumo:
A generalized Lévêque solution is presented for the conjugate fluid–fluid problem that arises in the thermal entrance region of laminar counterflow heat exchangers. The analysis, carried out for constant property fluids, assumes that the Prandtl and Peclet numbers are both large compared to unity, and neglects axial conduction both in the fluids and in the plate, assumed to be thermally thin. Under these conditions, the thermal entrance region admits an asymptotic self-similar description where the temperature varies as a power ϳ of the axial distance, with the particularity that the self-similarity exponent must be determined as an eigenvalue by solving a transcendental equation arising from the requirement of continuity of heat fluxes at the heat conducting wall. Specifically, the analysis reveals that j depends only on the lumped parameter ƙ = (A2/A1)1/3 (α1/α2)1/3(k2/k1), defined in terms of the ratios of the wall velocity gradients, A, thermal diffusivities, α i, and thermal conductivities,k i, of the fluids entering, 1, and exiting, 2, the heat exchanger. Moreover, it is shown that for large (small) values of K solution reduces to the classical first (second) Lévêque solution. Closed-form analytical expressions for the asymptotic temperature distributions and local heat-transfer rate in the thermal entrance region are given and compared with numerical results in the counterflow parallel-plate configuration, showing very good agreement in all cases.
Resumo:
0We study the exact solution for a two-mode model describing coherent coupling between atomic and molecular Bose-Einstein condensates (BEC), in the context of the Bethe ansatz. By combining an asymptotic and numerical analysis, we identify the scaling behaviour of the model and determine the zero temperature expectation value for the coherence and average atomic occupation. The threshold coupling for production of the molecular BEC is identified as the point at which the energy gap is minimum. Our numerical results indicate a parity effect for the energy gap between ground and first excited state depending on whether the total atomic number is odd or even. The numerical calculations for the quantum dynamics reveals a smooth transition from the atomic to the molecular BEC.
Resumo:
The XXZ Gaudin model with generic integrable boundaries specified by generic non-diagonal K-matrices is studied. The commuting families of Gaudin operators are diagonalized by the algebraic Bethe ansatz method. The eigenvalues and the corresponding Bethe ansatz equations are obtained. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We propose that the Baxter's Q-operator for the quantum XYZ spin chain with open boundary conditions is given by the j -> infinity limit of the corresponding transfer matrix with spin-j (i.e., (2j + I)-dimensional) auxiliary space. The associated T-Q relation is derived from the fusion hierarchy of the model. We use this relation to determine the Bethe Ansatz solution of the eigenvalues of the fundamental transfer matrix. The solution yields the complete spectrum of the Hamiltonian. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A method for the exact solution of the Bragg-difrraction problem for a photorefractive grating in sillenite crystals based on Pauli matrices is proposed. For the two main optical configurations explicit analytical expressions are found for the diffraction efficiency and the polarization of the scattered wave. The exact solution is applied to a detailed analysis of a number of particular cases. For the known limiting cases there is agreement with the published results.
Resumo:
The dynamics of Boolean networks (BN) with quenched disorder and thermal noise is studied via the generating functional method. A general formulation, suitable for BN with any distribution of Boolean functions, is developed. It provides exact solutions and insight into the evolution of order parameters and properties of the stationary states, which are inaccessible via existing methodology. We identify cases where the commonly used annealed approximation is valid and others where it breaks down. Broader links between BN and general Boolean formulas are highlighted.
Resumo:
A method for the exact solution of the Bragg-difrraction problem for a photorefractive grating in sillenite crystals based on Pauli matrices is proposed. For the two main optical configurations explicit analytical expressions are found for the diffraction efficiency and the polarization of the scattered wave. The exact solution is applied to a detailed analysis of a number of particular cases. For the known limiting cases there is agreement with the published results.
Resumo:
We study the statistical and dynamical behavior of turbulent Kelvin waves propagating on quantized vortices in superfluids and address the controversy concerning the energy spectrum that is associated with these excitations. Finding the correct energy spectrum is important because Kelvin waves play a major role in the dissipation of energy in superfluid turbulence at near-zero temperatures. In this paper, we show analytically that the solution proposed by [L’vov and Nazarenko, JETP Lett. 91, 428 (2010)] enjoys existence, uniqueness, and regularity of the prefactor. Furthermore, we present numerical results of the dynamical equation that describes to leading order the nonlocal regime of the Kelvin-wave dynamics. We compare our findings with the analytical results from the proposed local and nonlocal theories for Kelvin-wave dynamics and show an agreement with the nonlocal predictions. Accordingly, the spectrum proposed by L’vov and Nazarenko should be used in future theories of quantum turbulence. Finally, for weaker wave forcing we observe an intermittent behavior of the wave spectrum with a fluctuating dissipative scale, which we interpreted as a finite-size effect characteristic of mesoscopic wave turbulence.
Resumo:
This work examines analytically the forced convection in a channel partially filled with a porous material and subjected to constant wall heat flux. The Darcy–Brinkman–Forchheimer model is used to represent the fluid transport through the porous material. The local thermal non-equilibrium, two-equation model is further employed as the solid and fluid heat transport equations. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions, for the solid and fluid temperature fields, are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio and Darcy number as parameters. The results can be readily used to validate numerical simulations. They are, further, applicable to the analysis of enhanced heat transfer, using porous materials, in heat exchangers.
Resumo:
The challenge of detecting a change in the distribution of data is a sequential decision problem that is relevant to many engineering solutions, including quality control and machine and process monitoring. This dissertation develops techniques for exact solution of change-detection problems with discrete time and discrete observations. Change-detection problems are classified as Bayes or minimax based on the availability of information on the change-time distribution. A Bayes optimal solution uses prior information about the distribution of the change time to minimize the expected cost, whereas a minimax optimal solution minimizes the cost under the worst-case change-time distribution. Both types of problems are addressed. The most important result of the dissertation is the development of a polynomial-time algorithm for the solution of important classes of Markov Bayes change-detection problems. Existing techniques for epsilon-exact solution of partially observable Markov decision processes have complexity exponential in the number of observation symbols. A new algorithm, called constellation induction, exploits the concavity and Lipschitz continuity of the value function, and has complexity polynomial in the number of observation symbols. It is shown that change-detection problems with a geometric change-time distribution and identically- and independently-distributed observations before and after the change are solvable in polynomial time. Also, change-detection problems on hidden Markov models with a fixed number of recurrent states are solvable in polynomial time. A detailed implementation and analysis of the constellation-induction algorithm are provided. Exact solution methods are also established for several types of minimax change-detection problems. Finite-horizon problems with arbitrary observation distributions are modeled as extensive-form games and solved using linear programs. Infinite-horizon problems with linear penalty for detection delay and identically- and independently-distributed observations can be solved in polynomial time via epsilon-optimal parameterization of a cumulative-sum procedure. Finally, the properties of policies for change-detection problems are described and analyzed. Simple classes of formal languages are shown to be sufficient for epsilon-exact solution of change-detection problems, and methods for finding minimally sized policy representations are described.