1000 resultados para Evolution, Methylierung, Alu repeat


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les résultats ont été obtenus avec le logiciel "Insight-2" de Accelris (San Diego, CA)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 3' untranslated regions (3'UTRs) of flaviviruses are reviewed and analyzed in relation to short sequences conserved as direct repeats (DRs). Previously, alignments of the 3'UTRs have been constructed for three of the four recognized flavivirus groups, namely mosquito-borne, tick-borne, and nonclassified flaviviruses (MBFV, TBFV, and NCFV, respectively). This revealed (1) six long repeat sequences (LRSs) in the 3'UTR and open-reading frame (ORF) of the TBFV, (2) duplication of the 3'UTR of the NCFV by intramolecular recombination, and (3) the possibility of a common origin for all DRs within the MBFV. We have now extended this analysis and review it in the context of all previous published analyses. This has been achieved by constructing a robust alignment between all flaviviruses using the published DRs and secondary RNA structures as "anchors" to reveal additional homologies along the 3'UTR. This approach identified nucleotide regions within the MBFV, NKV (no-known vector viruses), and NCFV 3'UTRs that are homologous to different LRSs in the TBFV 3'UTR and ORF. The analysis revealed that some of the DRs and secondary RNA structures described individually within each flavivirus group share common evolutionary origins. The 3'UTR of flaviviruses, and possibly the ORF, therefore probably evolved through multiple duplication of an RNA domain, homologous to the LRS previously identified only in the TBFV. The short DRs in all virus groups appear to represent the evolutionary remnants of these domains rather than resulting from new duplications. The relevance of these flavivirus DRs to evolution, diversity, 3'UTR enhancer function, and virus transmission is reviewed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some families of mammalian interspersed repetitive DNA, such as the Alu SINE sequence, appear to have evolved by the serial replacement of one active sequence with another, consistent with there being a single source of transposition: the "master gene." Alternative models, in which multiple source sequences are simultaneously active, have been called "transposon models." Transposon models differ in the proportion of elements that are active and in whether inactivation occurs at the moment of transposition or later. Here we examine the predictions of various types of transposon model regarding the patterns of sequence variation expected at an equilibrium between transposition, inactivation, and deletion. Under the master gene model, all bifurcations in the true tree of elements occur in a single lineage. We show that this property will also hold approximately for transposon models in which most elements are inactive and where at least some of the inactivation events occur after transposition. Such tree shapes are therefore not conclusive evidence for a single source of transposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many families of interspersed repetitive DNA elements, including human Alu and LINE (Long Interspersed Element) elements, have been proposed to have accumulated through repeated copying from a single source locus: the "master gene." The extent to which a master gene model is applicable has implications for the origin, evolution, and function of such sequences. One repetitive element family for which a convincing case for a master gene has been made is the rodent ID (identifier) elements. Here we devise a new test of the master gene model and use it to show that mouse ID element sequences are not compatible with a strict master gene model. We suggest that a single master gene is rarely, if ever, likely to be responsible for the accumulation of any repeat family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the sister group to vertebrates, amphioxus is consistently used as a model of genome evolution for understanding the invertebrate/vertebrate transition. The amphioxus genome has not undergone massive duplications like those in the vertebrates or disruptive rearrangements like in the genome of Ciona, a urochordate, making it an ideal evolutionary model. Transposable elements have been linked to many genomic evolutionary changes including increased genome size, modified gene expression, massive gene rearrangements, and possibly intron evolution. Despite their importance in genome evolution, few previous examples of transposable elements have been identified in amphioxus. We report five novel Miniature Inverted-repeat Transposable Elements (MITEs) identified by an analysis of amphioxus DNA sequence, which we have named LanceleTn-1, LanceleTn-2, LanceleTn-3a, LanceleTn-3b and LanceleTn-4. Several of the LanceleTn elements were identified in the amphioxus ParaHox cluster, and we suggest these have had important implications for the evolution of this highly conserved gene cluster. The estimated high copy numbers of these elements implies that MITEs are probably the most abundant type of mobile element in amphioxus, and are thus likely to have been of fundamental importance in shaping the evolution of the amphioxus genome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) plant cell wall glycoproteins involved in plant immunity. They are typically encoded by gene families with a small number of gene copies whose evolutionary origin has been poorly investigated. Here we report the complete characterization of the full complement of the pgip family in soybean (Glycine max [L.] Merr.) and the characterization of the genomic region surrounding the pgip family in four legume species. Results BAC clone and genome sequence analyses showed that the soybean genome contains two pgip loci. Each locus is composed of three clustered genes that are induced following infection with the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, and remnant sequences of pgip genes. The analyzed homeologous soybean genomic regions (about 126 Kb) that include the pgip loci are strongly conserved and this conservation extends also to the genomes of the legume species Phaseolus vulgaris L., Medicago truncatula Gaertn. and Cicer arietinum L., each containing a single pgip locus. Maximum likelihood-based gene trees suggest that the genes within the pgip clusters have independently undergone tandem duplication in each species. Conclusions The paleopolyploid soybean genome contains two pgip loci comprised in large and highly conserved duplicated regions, which are also conserved in bean, M. truncatula and C. arietinum. The genomic features of these legume pgip families suggest that the forces driving the evolution of pgip genes follow the birth-and-death model, similar to that proposed for the evolution of resistance (R) genes of NBS-LRR-type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to evaluate historical change of the landscape of Madeira Island and to assess spatial and temporal vegetation dynamics. In current research diverse “retrospective techniques”, such as landscape repeat photography, dendrochronology, and research of historical records were used. These, combined with vegetation relevés, aimed to gather information about landscape change, disturbance history, and vegetation successional patterns. It was found that landscape change, throughout 125 years, was higher in the last five decades manly driven by farming abandonment, building growth and exotic vegetation coverage increase. Pristine vegetation was greatly destroyed since early settlement and by the end of the nineteenth century native vegetation was highly devastated due to recurrent antropogenic disturbances. These actions also helped to block plant succession and to modify floristical assemblages, affecting as well as species richness. In places with less hemeroby, although significant growth of vegetation of lower seral stages was detected, the vegetation of most mature stages headed towards unbalance between recovery and loss, being also very vulnerable to exotic species encroachment. Recovery by native vegetation also occurred in areas formerly occupied by exotic plants and agriculture but it was almost negligible. Vegetation recovery followed the successional model currently proposed, attesting the model itself. Yet, succession was slower than espected, due to lack of favourable conditions and to recurrent disturbances. Probable tempus of each seral stage was obtained by growth rates of woody taxa estimated through dendrochronology. The exotic trees which were the dominant trees in the past (Castanea sativa and Pinus pinaster) almost vanished. Eucalyptus globulus, the current main tree of the exotic forest is being replaced by other cover types as Acacia mearnsii. The latter, along with Arundo donax, Cytisus scoparius and Pittosporum undulatum are currently the exotic species with higher invasive behaviour. However, many other exotic species have also proved to be highly pervasive and came together with the ones referred above to prevent native vegetation regeneration, to diminish biological diversity, and to block early successional phases delaying native forest recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In higher eukaryotes, the 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units composed of a coding region and a non-transcribed spacer sequence (NTS). These tandem arrays can be found on either one or more chromosome pairs. 5S rDNA copies from the tilapia fish. Oreochromis niloticus, were cloned and the nucleotide sequences of the coding region and of the non-transcribed spacer were deter-mined. Moreover, the genomic organization of the 5S rDNA tandem repeats was investigated by fluorescence in situ hybridization (FISH) and Southern blot hybridization. Two 5S rDNA classes, one consisting of 1.4-kb repeats and another one with 0.5-kb repeats were identified and designated 5S rDNA type I and type II, respectively, An inverted 5S rRNA gene and a 5S rRNA putative pseudogene were also identified inside the tandem repeats of 5S rDNA type I. FISH permitted the visualization of the 5S rRNA genes at three chromosome loci, one of them consisting of arrays of the 5S rDNA type I, and the two others corresponding to arrays of the 5S rDNA type II. The two classes of the 5S rDNA. The presence of pseudogenes, and the inverted genes observed in the O. niloticus genome might be a consequence of the intense dynamics of the evolution of these tandem repeat elements. Copyright (C) 2002 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Members of the Anostomidae family provide an interesting model system for the study of the influence of repetitive elements on genome composition, mainly because they possess numerous heterochromatic segments and a peculiar system of female heterogamety that is restricted to a few species of the Leporinus genus. The aim of this study was to isolate and identify important new repetitive DNA elements in Anostomidae through restriction enzyme digestion, followed by cloning, characterisation and chromosome mapping of this fragment. To identify repetitive elements in other Leporinus species and expand on studies of repetitive elements in Anostomidae, hybridisation experiments were also performed using previously described probes of LeSpeI repetitive elements. Results: The 628-base pair (bp) LeSpeII fragment was hybridised to metaphase cells of L. elongatus individuals as well as those of L. macrocephalus, L. obtusidens, L. striatus, L. lacustris, L. friderici, Schizodon borellii and S. isognathus. In L. elongatus, both male and female cells contained small clusters of LeSpeII repetitive elements dispersed on all of the chromosomes, with enrichment near most of the terminal portions of the chromosomes. In the female sex chromosomes of L. elongatus (Z2,Z2/W1W 2), however, this repeated element was absent. In the remaining species, a dispersed pattern of hybridisation was observed on all chromosomes irrespective of whether or not they were sex chromosomes. The repetitive element LeSpeI produced positive hybridisations signals only in L. elongatus, L. macrocephalus and L. obtusidens, i.e., species with differentiated sex chromosomes. In the remaining species, the LeSpeI element did not produce hybridisation signals. Conclusions: Results are discussed in terms of the effects of repetitive sequences on the differentiation of the Anostomidae genome, especially with respect to sex chromosome evolution. LeSpeII showed hybridisation patterns typical of Long Interspersed Elements (LINEs). The differential distribution of this element may be linked to sex chromosome differentiation in L. elongatus species. The relationship between sex chromosome specificity and the LeSpeI element is confirmed in the species L. elongatus, L. macrocephalus and L. obtusidens. © 2012 da Silva et al.; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cichlids are important in the aquaculture and ornamental fish trade and are considered models for evolutionary biology. However, most studies of cichlids have investigated African species, and the South American cichlids remain poorly characterized. Studies in neotropical regions have focused almost exclusively on classical cytogenetic approaches without investigating physical chromosomal mapping of specific sequences. The aim of the present study is to investigate the genomic organization of species belonging to different tribes of the subfamily Cichlinae (Cichla monoculus, Astronotus ocellatus, Geophagus proximus, Acaronia nassa, Bujurquina peregrinabunda, Hoplarchus psittacus, Hypselecara coryphaenoides, Hypselecara temporalis, Caquetaia spectabilis, Uaru amphiacanthoides, Pterophyllum leopoldi, Pterophyllum scalare, and Symphysodon discus) and reexamine the karyotypic evolutionary patterns proposed for this group. Variations in some cytogenetic markers were observed, although no trends were found in terms of the increase, decrease, or maintenance of the basal diploid chromosome number 2n = 48 in the tribes. Several species were observed to have 18S rDNA genetic duplications, as well as multiple rDNA loci. In most of the taxa analyzed, the 5S rDNA was located in the interstitial region of a pair of homologous chromosomes, although variations from this pattern were observed. Interstitial telomere sites were also observed and appear to be involved in chromosomal rearrangement events and the accumulation of repeat-rich satellite DNA sequences. Our data demonstrated the karyotypic diversity that exists among neotropical cichlids, suggesting that most of this diversity is due to the repetitive sequences present in heterochromatic regions and that repeat sequences have greatly influenced the karyotypic evolution of these fishes. © 2012 Springer Science+Business Media B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data.Results: Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution.Conclusions: While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die S-adenosyl-L-Homocysteinhydrolase (AHCY)-Defizienz ist eine seltene autosomal rezessive Erbkrankheit, bei der Mutationen im AHCY-Gen die Funktionsfähigkeit des kodierten Enzyms beeinträchtigen. Diese Krankheit führt zu Symptomen wie Entwicklungsverzögerungen, mentaler Retardierung und Myopathie. In der vorliegenden Arbeit wurde der Einfluss der AHCY-Defizienz auf die Methylierung der DNA in Blutproben und Fibroblasten von Patienten mit AHCY-Defizienz, sowie in HEK293- und HepG2-Zelllinien mit AHCY-Knockdown untersucht. Der gesamtgenomische Methylierungsstatus wurde mit Hilfe des MethylFlash ™ Methylated DNA Quantification Kit (Epigentek) bei drei Patienten-Blutproben festgestellt. In den Blutproben von sieben Patienten und Fibroblasten von einem Patienten wurde die Methylierung von DMRs sieben geprägter Gene (GTL2, H19, LIT1, MEST, NESPAS, PEG3, SNRPN) und zwei repetitiver Elemente (Alu, LINE1) mittels Bisulfit-Pyrosequenzierung quantifiziert und durch High Resolution Melting-Analyse bestätigt. Zusätzlich wurde eine genomweite Methylierungsanalyse mit dem Infinium® HumanMethylation450 BeadChip (Illumina) für vier Patientenproben durchgeführt und die Expression von AHCY in Fibroblasten mittels Expressions-qPCR und QUASEP-Analyse untersucht. Die Methylierungsanalysen ergaben eine Hypermethylierung der gesamtgenomischen DNA und stochastische Hypermethylierungen von DMRs geprägter Gene bei einigen Patienten. Die HEK293- und HepG2-Zelllinien wiesen dagegen hauptsächlich stochastische Hypomethylierungen an einigen DMRs geprägter Gene und LINE1-Elementen auf. Die genomweite Methylierungsarray-Analyse konnte die Ergebnisse der Bisulfit-Pyrosequenzierung nicht bestätigen. Die Expressionsanalysen der AHCY-defizienten Fibroblasten zeigten eine verminderte Expression von AHCY, wobei beide Allele etwa gleich stark transkribiert wurden. Die Ergebnisse deuten darauf hin, dass die AHCY-Defizienz eine gute Modellerkrankung für die Untersuchung biologischer Konsequenzen von Methylierungsstörungen im Rahmen der Epigenetik-Forschung sein könnte. Sie ist unseres Wissens die erste monogene Erkrankung mit symptomaler DNA-Hypermethylierung beim Menschen.