912 resultados para Estrogen Receptor, Breast Cancer, Molecular Epidemiology
Resumo:
The NR4A1-3 (Nur77, NURR1 and NOR-1) subfamily of nuclear hormone receptors (NRs) has been implicated in Parkinson's disease, schizophrenia, manic depression, atherogenesis, Alzheimer's disease, rheumatoid arthritis, cancer and apoptosis. This has driven investigations into the mechanism of action, and the identification of small molecule regulators, that may provide the platform for pharmaceutical and therapeutic exploitation. Recently, we found that the purine antimetabolite 6-Mercaptopurine (6-MP), which is widely used as an anti-neoplastic and anti-inflammatory drug, modulated the NR4A1-3 subfamily. Interestingly, the agonist-mediated activation did not involve modulation of primary coactivators' (e.g. p300 and SRC-2/GRIP-1) activity and/or recruitment. However, the role of the subsequently recruited coactivators, for example CARM-1 and TRAP220, in 6-MP-mediated activation of the NR4A1-3 subfamily remains obscure. In this study we demonstrate that 6-MP modulates the activity of the coactivator TRAP220 in a dose-dependent manner. Moreover, we demonstrate that TRAP220 potentiates NOR-1-mediated transactivation, and interacts with the NR4A1-3 subgroup in an AF-1-dependent manner in a cellular context. The region of TRAP220 that mediated 6-MP activation and NR4A interaction was delimited to amino acids 1-800, and operates independently of the critical PKC and PKA phosphorylation sites. Interestingly, TRAP220 expression does not increase the relative induction by 6-MP, however the absolute level of NOR-1-mediated trans-activation is increased. This study demonstrates that 6-MP modulates the activity of the NR4A subgroup, and the coactivator TRAP220.
Resumo:
Background BRCA1-mutant breast tumors are typically estrogen receptor alpha (ER alpha) negative, whereas most sporadic tumors express wild-type BRCA1 and are ER alpha positive. We examined a possible mechanism for the observed ER alpha-negative phenotype of BRCA1-mutant tumors.
Methods We used a breast cancer disease-specific microarray to identify transcripts that were differentially expressed between paraffin-embedded samples of 17 BRCA1-mutant and 14 sporadic breast tumors. We measured the mRNA levels of estrogen receptor 1 (ESR1) ( the gene encoding ER alpha), which was differentially expressed in the tumor samples, by quantitative polymerase chain reaction. Regulation of ESR1 mRNA and ER alpha protein expression was assessed in human breast cancer HCC1937 cells that were stably reconstituted with wild-type BRCA1 expression construct and in human breast cancer T47D and MCF-7 cells transiently transfected with BRCA1-specific short-interfering RNA ( siRNA). Chromatin immunoprecipitation assays were performed to determine if BRCA1 binds the ESR1 promoter and to identify other interacting proteins. Sensitivity to the antiestrogen drug fulvestrant was examined in T47D and MCF-7 cells transfected with BRCA1-specific siRNA. All statistical tests were two-sided.
Results Mean ESR1 gene expression was 5.4-fold lower in BRCA1-mutant tumors than in sporadic tumors ( 95% confidence interval [CI]=2.6-fold to 40.1-fold, P =.0019). The transcription factor Oct-1 recruited BRCA1 to the ESR1 promoter, and both BRCA1 and Oct-1 were required for ER alpha expression. BRCA1-depleted breast cancer cells expressing exogenous ER alpha were more sensitive to fulvestrant than BRCA1-depleted cells transfected with empty vector ( T47D cells, the mean concentration of fulvestrant that inhibited the growth of 40% of the cells [IC40] for empty vector versus ER alpha: > 10(-5) versus 8.0 x 10(-9) M [ 95% CI=3.1x10(-10) to 3.2 x 10(-6) M]; MCF-7 cells, mean IC40 for empty vector versus ER alpha : > 10(-5) versus 4.9 x 10(-8) M [ 95% CI=2.0 x 10(-9) to 3.9 x 10(-6) M]).
Conclusions BRCA1 alters the response of breast cancer cells to antiestrogen therapy by directly modulating ER alpha expression.
Resumo:
Recent evidence indicates that the estrogen receptor-a-negative, androgen receptor (AR)- positive molecular apocrine subtype of breast cancer is driven by AR signaling. The MDA-MB-453 cell line is the prototypical model of this breast cancer subtype; its proliferation is stimulated by androgens such as 5a-dihydrotestosterone (DHT) but inhibited by the progestin medroxyprogesterone acetate (MPA) via AR-mediated mechanisms. We report here that the AR gene in MDAMB- 453 cells contains a G-T transversion in exon 7, resulting in a receptor variant with a glutamine to histidine substitution at amino acid 865 (Q865H) in the ligand binding domain. Compared with wild-type AR, the Q865H variant exhibited reduced sensitivity to DHT and MPA in transactivation assays in MDA-MB-453 and PC-3 cells but did not respond to non-androgenic ligands or receptor antagonists. Ligand binding, molecular modeling, mammalian two-hybrid and immunoblot assays revealed effects of the Q865H mutation on ligand dissociation, AR intramolecular interactions, and receptor stability. Microarray expression profiling demonstrated that DHT and MPA regulate distinct transcriptional programs in MDA-MB-453 cells. Gene Set Enrichment Analysis revealed that DHT- but not MPA-regulated genes were associated with estrogen-responsive transcriptomes from MCF-7 cells and the Wnt signaling pathway. These findings suggest that the divergent proliferative responses of MDA-MB-453 cells to DHT and MPA result from the different genetic programs elicited by these two ligands through the AR-Q865H variant. This work highlights the necessity to characterize additional models of molecular apocrine breast cancer to determine the precise role of AR signaling in this breast cancer subtype. Endocrine-Related Cancer (2012) 19 599–613
Resumo:
Transcription factor RUNX3 is inactivated in a number of malignancies, including breast cancer, and is suggested to function as a tumor suppressor. How RUNX3 functions as a tumor suppressor in breast cancer remains undefined. Here, we show that about 20% of female Runx3(+/-) mice spontaneously developed ductal carcinoma at an average age of 14.5 months. Additionally, RUNX3 inhibits the estrogen-dependent proliferation and transformation potential of ERa-positive MCF-7 breast cancer cells in liquid culture and in soft agar and suppresses the tumorigenicity of MCF-7 cells in severe combined immunodeficiency mice. Furthermore, RUNX3 inhibits ERa-dependent transactivation by reducing the stability of ERa. Consistent with its ability to regulate the levels of ERa, expression of RUNX3 inversely correlates with the expression of ERa in breast cancer cell lines, human breast cancer tissues and Runx3(+/-) mouse mammary tumors. By destabilizing ERa, RUNX3 acts as a novel tumor suppressor in breast cancer.
Resumo:
Clinicopathological and molecular factors determine the prognosis of breast cancer. PRO_10 is a prognostic score based on quantitative RT-PCR of 10 proliferation-associated genes obtained from formalin-fixed, paraffin-embedded breast cancer tissues. We revalidated PRO_10 in patients treated in a non-trial setting.
Resumo:
The epithelial calcium channel TRPV6 is upregulated in breast carcinoma compared with normal mammary gland tissue. The selective estrogen receptor modulator tamoxifen is widely used in breast cancer therapy. Previously, we showed that tamoxifen inhibits calcium uptake in TRPV6-transfected Xenopus oocytes. In this study, we examined the effect of tamoxifen on TRPV6 function and intracellular calcium homeostasis in MCF-7 breast cancer cells transiently transfected with EYFP-C1-TRPV6. TRPV6 activity was measured with fluorescence microscopy using Fura-2. The basal calcium level was higher in transfected cells compared with nontransfected cells in calcium-containing solution but not in nominally calcium-free buffer. Basal influxes of calcium and barium were also increased. In transfected cells, 10 mumol/L tamoxifen reduced the basal intracellular calcium concentration to the basal calcium level of nontransfected cells. Tamoxifen decreased the transport rates of calcium and barium in transfected cells by 50%. This inhibitory effect was not blocked by the estrogen receptor antagonist, ICI 182,720. Similarly, a tamoxifen-induced inhibitory effect was also observed in MDA-MB-231 estrogen receptor-negative cells. The effect of tamoxifen was completely blocked by activation of protein kinase C. Inhibiting protein kinase C with calphostin C decreased TRPV6 activity but did not alter the effect of tamoxifen. These findings illustrate how tamoxifen might be effective in estrogen receptor-negative breast carcinomas and suggest that the therapeutic effect of tamoxifen and protein kinase C inhibitors used in breast cancer therapy might involve TRPV6-mediated calcium entry. This study highlights a possible role of TRPV6 as therapeutic target in breast cancer therapy.
Resumo:
Estrogen receptor (ER) and the tumor suppressor p53 are key prognostic indicators in breast cancer. Estrogen signaling through its receptor (ER) controls proliferation of normal as well as transformed mammary epithelial cells, and the presence of ER is established as a marker of good prognosis and response to therapy. The p53 tumor suppressor gene is often referred to as the "cellular gatekeeper" due to its extensive control of cell proliferation and apoptosis. Loss of functional p53 is a negative prognostic indicator and is correlated with lack of response to antiestrogens, reduced disease-free interval and increased chance of disease recurrence. Clinical studies have demonstrated that tumors with mutated p53 tend to be ER negative, while ER positive tumors tend to have wild type p53. ^ Recent studies from our lab indicate that p53 genotype correlates with estrogen receptor expression in mammary tumors in vivo. We therefore hypothesized that p53 regulates ER expression in mammary cancer cells by recruitment of specific cofactors to the ER promoter. To test this, MCF-7 cells were treated with doxorubicin or ionizing radiation, both of which stimulated significant increases in p53 expression, as expected, but also increased ER expression in a p53-dependent manner. Furthermore, in cells treated with siRNA targeting p53, both p53 and ER protein levels were significantly reduced. P53 was also demonstrated to transcriptionally regulate the ER promoter in luciferase assays and chromatin immunoprecipitation assays showed that p53 was recruited to the ER promoter along with CARM1, CBP, c-Jun and Sp1 and that this multifactor complex was formed in a p53-dependent manner. The regulation of ER by p53 has therapeutic implications, as the treatment of breast cancer cells with doxorubicin sensitized these cells to tamoxifen treatment. Furthermore, response to tamoxifen as well as to estrogen was dependent on p53 expression in ER positive human breast cancer cells. Taken together, these data demonstrate that p53 regulates ER expression through transcriptional control of the ER promoter, accounting for their concordant expression in human breast cancer and identifying potentially beneficial therapeutic strategies for the treatment of ER positive breast cancers. ^
Resumo:
The epidermal growth factor (EGF) family of receptors (EGFR) is overproduced in estrogen receptor (ER) negative (−) breast cancer cells. An inverse correlation of the level of EGFR and ER is observed between ER− and ER positive (+) breast cancer cells. A comparative study with EGFR-overproducing ER− and low-level producing ER+ breast cancer cells suggests that EGF is a major growth-stimulating factor for ER− cells. An outline of the pathway for the EGF-induced enhanced proliferation of ER− human breast cancer cells is proposed. The transmission of mitogenic signal induced by EGF–EGFR interaction is mediated via activation of nuclear factor κB (NF-κB). The basal level of active NF-κB in ER− cells is elevated by EGF and inhibited by anti-EGFR antibody (EGFR-Ab), thus qualifying EGF as a NF-κB activation factor. NF-κB transactivates the cell-cycle regulatory protein, cyclin D1, which causes increased phosphorylation of retinoblastoma protein, more strongly in ER− cells. An inhibitor of phosphatidylinositol 3 kinase, Ly294–002, blocked this event, suggesting a role of the former in the activation of NF-κB by EGF. Go6976, a well-characterized NF-κB inhibitor, blocked EGF-induced NF-κB activation and up-regulation of cell-cycle regulatory proteins. This low molecular weight compound also caused apoptotic death, predominantly more in ER− cells. Thus Go6976 and similar NF-κB inhibitors are potentially novel low molecular weight therapeutic agents for treatment of ER− breast cancer patients.
Resumo:
Tese de mestrado, Biologia Molecular e Genética, Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Our laboratory has previously found that anti-mitogenic nuclear receptor mRNA is elevated in late stage tumours and this study was performed to scrutinize the possibility of cancer-stroma crosstalk using hormone signaling in these tissues. RNA levels in stromal tissue were examined for the estrogen α, estrogen β, androgen, progesterone and glucocorticoid nuclear receptors by a semi-quantitative PCR. Significant differences in expression between the cancer stroma and control tissue were seen, analyzing for both cancer grade and estrogen receptor status. Stroma and control tissue were significantly different for the progesterone and glucocorticoid nuclear receptors (p = 5.908 × 10−7 and 2.761 × 10−5, respectively). Glucocorticoid receptor also showed a significant increase to mRNA levels in the stroma of estrogen receptor negative tumours (p = 5.85 × 10−5). By contrast, the estrogen receptors α and β, those most closely associated with breast tissue growth, showed no significant change in mRNA (p = 0.372 and 0.655, respectively). Androgen receptor mRNA also remained unaffected (p = 0.174).
Resumo:
Previous studies in our laboratory have shown association of nuclear receptor expression and histological breast cancer grade. To further investigate these findings, it was the objective of this study to determine if expression levels of the estrogen alpha, estrogen beta and androgen nuclear receptor genes varied in different breast cancer grades. RNA extracted from paraffin embedded archival breast tumour tissue was converted into cDNA and cDNA underwent PCR to enable quantitation of mRNA expression. Expression data was normalised against the 18S ribosomal gene multiplex and analysed using ANOVA. Analysis indicated a significant alteration of expression for the androgen receptor in different cancer grades (P=0.014), as well as in tissues that no longer possess estrogen receptor alpha proteins (P=0.025). However, expression of estrogen receptors alpha and beta did not vary significantly with cancer grade (P=0.057 and 0.622, respectively). Also, the expression of estrogen receptor alpha or beta did not change, regardless of the presence of estrogen receptor alpha protein in the tissue (P=0.794 and 0.716, respectively). Post-hoc tests indicate that the expression of the androgen receptor is increased in estrogen receptor negative tissue as well as in grade 2 and grade 3 tumours, compared to control tissue. This increased expression in late stage breast tumours may have implications to the treatment of breast tumours, particularly those lacking expression of other nuclear receptor genes.
Resumo:
We have utilized a cross-sectional association approach to investigate sporadic breast cancer. Polymorphisms in 2 candidate genes, ESRalpha and GRL, were examined in an unrelated breast cancer-affected and age-matched control population. Several polymorphic regions within the ESRalpha gene have been identified, and some alleles of these polymorphisms have been found to occur at increased levels in breast-cancer patients. Additionally, variations in GRL have the potential to disrupt cell transcription and may be associated with cancer formation. We analyzed 3 polymorphisms, from codons 10 (TCT to TCC), 325 (CCC to CCG) and 594 (ACA to ACG) of ESRalpha, and a highly polymorphic dinucleotide repeat, D5S207, located within 200 kb of the GRL. When allelic frequencies of the codon 594 (exon 8) ESR polymorphism were compared between affected and unaffected populations, a significant difference was observed (p = 0.005). Results from the D5S207 dinucleotide repeat located near GRL also indicated a significant difference between the tested case and control populations (p = 0.001). Allelic frequencies of the codon 10 and codon 325 ESR polymorphisms were not significantly different between populations (p = 0.152 and 0.181, respectively). Our results indicate that specific alleles of the ESR gene (alpha subtype) and a marker for the GRL gene locus are associated with sporadic breast-cancer development in the tested Caucasian population and justify further investigation of the role of these and other nuclear steroid receptors in the etiology of breast cancer.
Resumo:
Breast cancer is the cancer that most commonly affects women worldwide. This type of cancer is genetically complex, but is strongly linked to steroid hormone signalling systems. Because microRNAs act as translational regulators of multiple genes, including the steroid nuclear receptors, single nucleotide polymorphisms (SNPs) in microRNAs genes can have potentially wide-ranging influences on breast cancer development. Thus, this study was conducted to investigate the relationships between six SNPs (rs6977848, rs199981120, rs185641358, rs113054794, rs66461782, and rs12940701) located in four miRNA genes predicted to target the estrogen receptor (miR-148a, miR-221, miR-186, and miR-152) and breast cancer risk in Caucasian Australian women. By using high resolution melt analysis (HRM) and polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP), 487 samples including 225 controls and 262 cases were genotyped. Analysis of their genotype and allele frequencies indicated that the differences between case and control populations was not significant for rs6977848, rs66461782, and rs12940701 because their p-values are 0.81, 0.93, 0.1 which are all above the threshold value (p=0.05). Our data thus suggests that these SNPs do not affect breast cancer risk in the tested population. In addition, rs199981120, rs185641358, and rs113054794 could not be found in this population, suggesting that these SNPs do not occur in Caucasian Australians.