458 resultados para Equacions diferencials no lineals


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a classification and derive the associated normal forms for rational difference equations with complex coefficients. As an application, we study the global periodicity problem for second order rational difference equations with complex coefficients. We find new necessary conditions as well as some new examples of globally periodic equations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider multidimensional backward stochastic differential equations (BSDEs). We prove the existence and uniqueness of solutions when the coefficient grow super-linearly, and moreover, can be neither locally Lipschitz in the variable y nor in the variable z. This is done with super-linear growth coefficient and a p-integrable terminal condition (p & 1). As application, we establish the existence and uniqueness of solutions to degenerate semilinear PDEs with superlinear growth generator and an Lp-terminal data, p & 1. Our result cover, for instance, the case of PDEs with logarithmic nonlinearities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a delay differential equation with two delays. The Hopf bifurcation of this equation is investigated together with the stability of the bifurcated periodic solution, its period and the bifurcation direction. Finally, three applications are given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We extend Floquet theory for reducing nonlinear periodic difference systems to autonomous ones (actually linear) by using normal form theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider an autonomous differential system in Rn with a periodic orbit and we give a new method for computing the characteristic multipliers associated to it. Our method works when the periodic orbit is given by the transversal intersection of n ¡ 1 codimension one hypersurfaces and is an alternative to the use of the first order variational equations. We apply it to study the stability of the periodic orbits in several examples, including a periodic solution found by Steklov studying the rigid body dynamics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt"

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate different models that are intended to describe the small mean free path regime of a kinetic equation, a particular attention being paid to the moment closure by entropy minimization. We introduce a specific asymptotic-induced numerical strategy which is able to treat the stiff terms of the asymptotic diffusive regime. We evaluate on numerics the performances of the method and the abilities of the reduced models to capture the main features of the full kinetic equation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present notes are intended to present a detailed review of the existing results in dissipative kinetic theory which make use of the contraction properties of two main families of probability metrics: optimal mass transport and Fourier-based metrics. The first part of the notes is devoted to a self-consistent summary and presentation of the properties of both probability metrics, including new aspects on the relationships between them and other metrics of wide use in probability theory. These results are of independent interest with potential use in other contexts in Partial Differential Equations and Probability Theory. The second part of the notes makes a different presentation of the asymptotic behavior of Inelastic Maxwell Models than the one presented in the literature and it shows a new example of application: particle's bath heating. We show how starting from the contraction properties in probability metrics, one can deduce the existence, uniqueness and asymptotic stability in classical spaces. A global strategy with this aim is set up and applied in two dissipative models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze the two-dimensional parabolic-elliptic Patlak-Keller-Segel model in the whole Euclidean space R2. Under the hypotheses of integrable initial data with finite second moment and entropy, we first show local in time existence for any mass of "free-energy solutions", namely weak solutions with some free energy estimates. We also prove that the solution exists as long as the entropy is controlled from above. The main result of the paper is to show the global existence of free-energy solutions with initial data as before for the critical mass 8 Π/Χ. Actually, we prove that solutions blow-up as a delta dirac at the center of mass when t→∞ keeping constant their second moment at any time. Furthermore, all moments larger than 2 blow-up as t→∞ if initially bounded.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Variational steepest descent approximation schemes for the modified Patlak-Keller-Segel equation with a logarithmic interaction kernel in any dimension are considered. We prove the convergence of the suitably interpolated in time implicit Euler scheme, defined in terms of the Euclidean Wasserstein distance, associated to this equation for sub-critical masses. As a consequence, we recover the recent result about the global in time existence of weak-solutions to the modified Patlak-Keller-Segel equation for the logarithmic interaction kernel in any dimension in the sub-critical case. Moreover, we show how this method performs numerically in one dimension. In this particular case, this numerical scheme corresponds to a standard implicit Euler method for the pseudo-inverse of the cumulative distribution function. We demonstrate its capabilities to reproduce easily without the need of mesh-refinement the blow-up of solutions for super-critical masses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Vegeu el resum a l´inici del document del fitxer adjunt."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We give sufficient conditions for existence, uniqueness and ergodicity of invariant measures for Musiela's stochastic partial differential equation with deterministic volatility and a Hilbert space valued driving Lévy noise. Conditions for the absence of arbitrage and for the existence of mild solutions are also discussed.